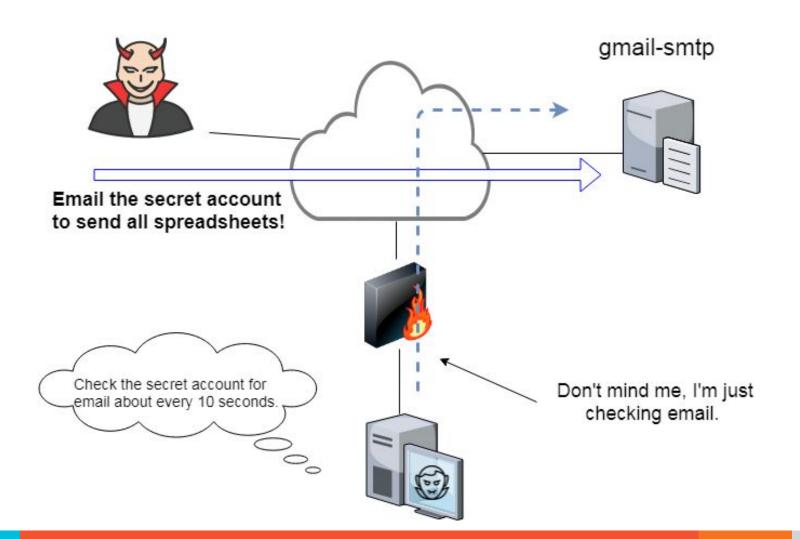


Network Decoding C&C Channels - gcat

Brought to you by...

Red Team/Blue Team Awesomeness

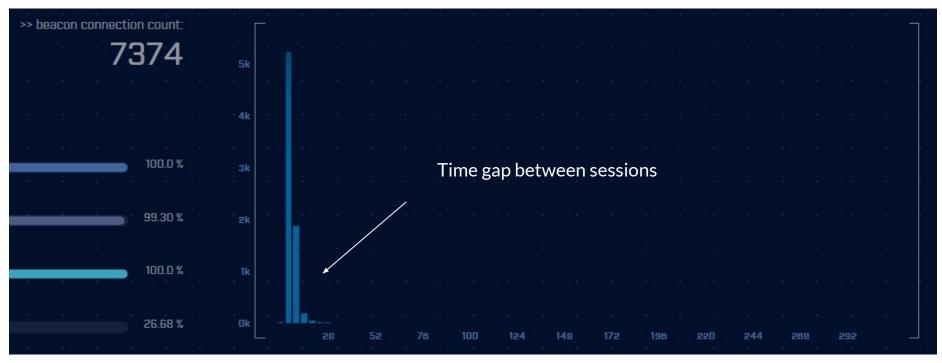
This will be a series!


- Positive response to decoding dnscat2
- We've decided to make this a series
- Will dissect a C&C every few weeks
- Hit us up on Twitter if there is a C&C you want covered
 - @activecmeasures

What we will cover

- Deep dive on gcat
- Interesting in that many vendors ignore it
- We will show
 - What it looks like on the wire
 - Various methods of detection
 - Some scale easier than others
- Lab format so you can play along
 - Will make slides and Zeek logs available

gcat


- Pretty simplistic C&C
 - But oh so hard to detect
- Basically, a Python based email client
- Communicates to GMail via IMAP4/TLS
 - Could easily be adapted to other mail services
 - Would not be that hard to adapt to other protocols
- Checks for email in an account you define
- Received email checked for commands

Some basic protections

- Uses IMAP4 over TLS
 - TCP/993 to check for commands
 - TCP/587 (SMTP/TLS) to send responses
 - Both can obviously be changed
- Can you lock this down?
 - Is there a business need for this traffic?
 - If not, close all remote email client traffic
 - Problematic if they switch to HTTPS
- The above applies to all public mail servers

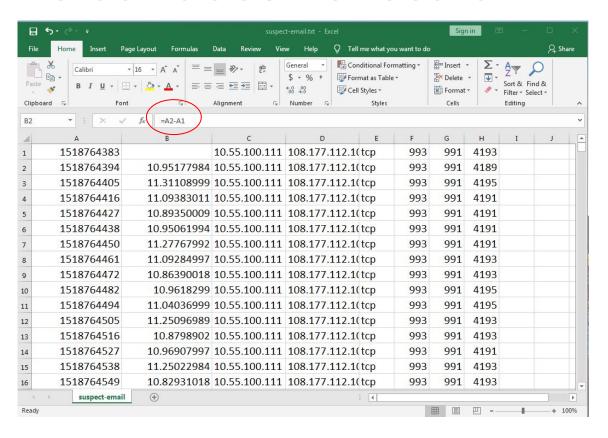
Why is gcat hard to detect?

gcat uses the same signal timing as a regular email client

Let's work with Zeek (Bro)!

#fields	ts	uid	id.orig	h	id.orig_	р	id.resp_	h	id.resp_	p
proto	service	duration	n	orig byt	ces	resp byt	ces	conn_sta	ate	local or
ig	local re	esp	missed :	bytes _	history	orig pkt	CS .	orig ip	bytes	resp pkt
S	resp \overline{i} p bytes		tunnel parents			_				
#types	time -	string	addr [—]	port	addr	port	enum	string	interval	
count	count	string	bool	bool	count	string	count	count	count	count
set[string]										
1518764388.106897			CUxfDy1yAfC0uE9x9i			192.168.88.2		13324	84.53.139.129	
53	udp	dns	0.15688	0	73	91	SF	T	F	0
Dd	1	101	1	119	-					
1518764388.264079			CERle52HPi1iLJ4wjh			192.168.88.2		23818	23818 2.22.230.130	
53	udp	dns	0.15524	8	69	87	SF	T	F	0
Dd	1	97	1	115	_					
1518764388.419608			CBiJjv1w7hS6QIWJw5			192.168.88.2		52939	84.53.139.129	
53	udp	dns	0.14918	8	69	85	SF	T	F	0
Dd	1	97	1	113	_					
1518764383.094336			Cdgu4i16mvjFvFJKc9			10.55.100.111		62788	108.177.112.108	
993	tcp	ssl	11.2710	44	991	4193	SF	T	F	0
ShADadf	F	13	1523	17	4885	_				
1518764333.507371			CTutuG4NoEQXFn6CD6		192.168.88.2		123	45.33.48.4		
123	udp	-	0.08153	3	48	48	SF	T	F	0
Dd	1	76	1	76	_					
:_										

Absolute time only


24-hours of data

```
cbrenton@cbrenton-3:~/test/2018-02-16$ zcat conn.* bro-cut ts id.orig h id.
resp h proto id.resp p orig bytes resp bytes | grep 108.177.112.108 | tr "\\t
" "," > suspect-email.txt
cbrenton@cbrenton-3:~/test/2018-02-16$ head suspect-email.txt
1518764383.094336, 10.55.100.111, 108.177.112.108, tcp, 993, 991, 4193
1518764394.046118,10.55.100.111,108.177.112.108,tcp,993,991,4189
1518764405.357205,10.55.100.111,108.177.112.108,tcp,993,991,4195
1518764416.451039,10.55.100.111,108.177.112.108,tcp,993,991,4191
1518764427.344538,10.55.100.111,108.177.112.108,tcp,993,991,4191
1518764438.295155,10.55.100.111,108.177.112.108,tcp,993,991,4191
1518764449.572839,10.55.100.111,108.177.112.108,tcp,993,991,4191
1518764460.665683,10.55.100.111,108.177.112.108,tcp,993,991,4193
1518764471.529585,10.55.100.111,108.177.112.108,tcp,993,991,4193
1518764482.491416,10.55.100.111,108.177.112.108,tcp,993,991,4195
cbrenton@cbrenton-3:~/test/2018-02-16$
```

Other options

- tshark will print time deltas
- Time deltas let us analyze beacon timing
 - Need to look at the time gap between signals
- Zeek will only give us absolute time
 - In conn.log, other log formats support ts_delta
 - Doesn't matter C&C and email use same timing
- Other options
 - O What if we wanted to work with time deltas?
 - What other data can be analyzed for beacons?

Works but does not scale

gcat - Focus on packets and bytes

```
cbrenton@cbrenton-3:~/test/2018-02-16$ zcat conn.* | bro-cut id.orig h id.res
p h proto id.resp p orig pkts resp pkts orig bytes resp bytes grep 108.177.
112.108 | tr "\\t" "," > analyze-email.txt
cbrenton@cbrenton-3:~/test/2018-02-16$ head analyze-email.txt
10.55.100.111,108.177.112.108,tcp,993,13,17,991,4193
10.55.100.111,108.177.112.108,tcp,993,13,17,991,4189
10.55.100.111,108.177.112.108,tcp,993,13,17,991,4195
10.55.100.111,108.177.112.108,tcp,993,13,17,991,4191
10.55.100.111,108.177.112.108,tcp,993,13,17,991,4191
10.55.100.111,108.177.112.108,tcp,993,13,17,991,4191
10.55.100.111,108.177.112.108,tcp,993,13,17,991,4191
10.55.100.111,108.177.112.108,tcp,993,13,18,991,4193
10.55.100.111,108.177.112.108,tcp,993,13,17,991,4193
10.55.100.111, 108.177.112.108, tcp, 993, 14, 17, 991, 4195
cbrenton@cbrenton-3:~/test/2018-02-16$
```

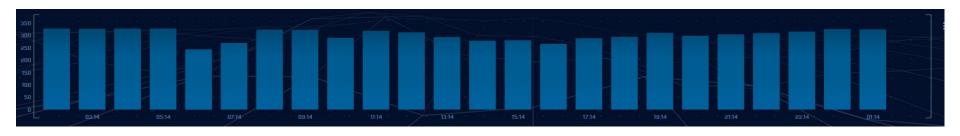
Consistency in packet quantity

```
cbrenton@cbrenton-3:~/test/2018-02-16$ cut -d ',' -f 5 analyz
e-email.txt | Rscript -e 'y <-scan("stdin", quiet=TRUE)' -e
cat(min(y), max(y), mean(y), sd(y), sep="\n")
18
13.30978
0.4911679
cbrenton@cbrenton-3:~/test/2018-02-16$ cut -d ',' -f 6 analyz
e-email.txt | Rscript -e 'y <-scan("stdin", quiet=TRUE)' -e
cat(min(y), max(y), mean(y), sd(y), sep="\n")
22
17.30693
0.5159443
cbrenton@cbrenton-3:~/test/2018-02-16$
```

Consistency in data transferred

```
cbrenton@cbrenton-3:~/test/2018-02-16$ cut -d ',' -f 7 analyz
e-email.txt | Rscript -e 'y <-scan("stdin", quiet=TRUE)' -e
cat(min(y), max(y), mean(y), sd(y), sep="\n")
1049
990.8463
11.79306
cbrenton@cbrenton-3:~/test/2018-02-16$ cut -d ',' -f 8 analyz
e-email.txt | Rscript -e 'y <-scan("stdin", quiet=TRUE)' -e
cat(min(y), max(y), mean(y), sd(y), sep="\n")
5451
4191.595
51.74911
cbrenton@cbrenton-3:~/test/2018-02-16$
```

Let's look at it with RITA

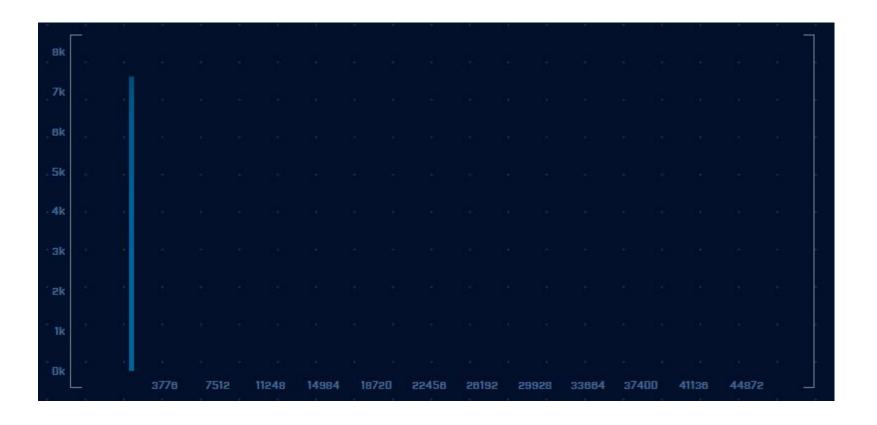

- Open source tool supported by ACM
- Designed to identify C&C channels
- Command line based, but powerful
- Will identify
 - Beacons
 - Long connections
 - Suspect DNS
 - Blacklist communications
 - Plus a whole lot more

What RITA detected

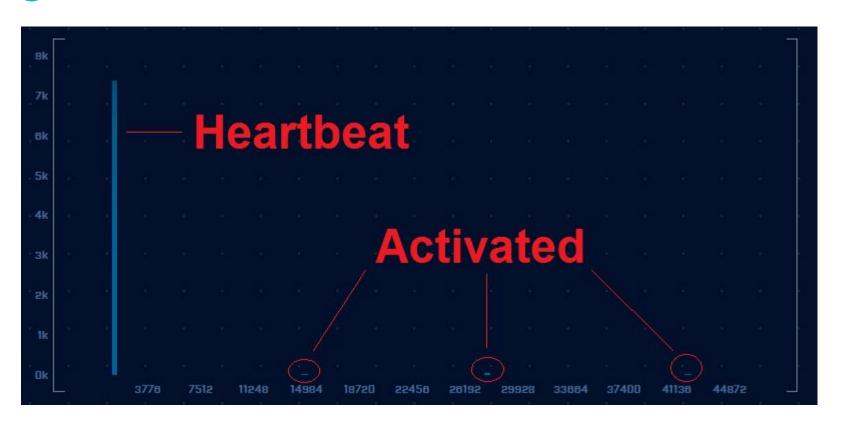
87.4% certain this is a beacon Usually > 90% is actionable

Reminder of why this is hard

Plot of session activity over 24 hours



Could be an email client or gcat, both use the same timing.


Session size analysis of user email

Well this looks odd...

gcat once it's activated

User email versus gcat

- Similar session timing used for both
- User email
 - Expect to see lots of unique session sizes
 - 130 emails per day is the industry average
- ▷ gcat
 - One very strong signal for heartbeat
 - Some small number of other sizes
 - Once each time gcat is activated

What have we learned?

- gcat cannot be detected based on timing
 - Mimics normal email clients too closely
 - This is why many tools ignore this channel
- gcat can be detected through other means
 - Packet quantity
 - Session size comparison
- Tag by understanding "normal" and identifying deviations

Wrap up / Q&A

- Drop a tweet to @activecmeasures and tell us what C&C channel to cover next
 - https://twitter.com/ActiveCmeasures
- Type "demo" in the chat if you would like a demo of Al-Hunter
- ▶ To grab RITA:

```
http://acm.re/free-tools/rita/
```

To grab the pcaps from this webcast:

```
http://acm.re/webcast-file-downloads/
```