Analyzing Encrypted Traffic

Corelight and Active Countermeasures

Welcome!

- Who we are
- Today's goals
 - Quick coverage of encrypted traffic
 - How this affects Zeek, RITA, and AC-Hunter
 - How to handle encrypted traffic
- Threat Hunter Community Discord
 - https://discord.gg/6tHmJCtc
 - #live-webcast-chat
 - #acm-webcast-content
 - PDF of these slides

Encrypted traffic on the wire

- Can see headers
 - IP addresses
 - Protocol, ports, flags
- Can't see payload
 - Request placed or destination URL
 - Malware, watermarks, spam
 - Hurts signature IDS

No.	Time	Source	Destination	Protocol	Length	Info	
ĺ	9 0.040398	104.104.102.64	10.0.0.41	TCP	66	443 → 54033 [ACK] Seq=1 Ack=518 Win=64768 Len=0 TSval=3848679456 TSecr=661315952	
	10 0.042478	104.104.102.64	10.0.0.41	TLSv1	1514	Server Hello, Change Cipher Spec, Application Data	
	11 0.043429	104.104.102.64	10.0.0.41	TCP	1514	443 → 54033 [PSH, ACK] Seq=1449 Ack=518 Win=64768 Len=1448 TSval=3848679458 TSecr=661315	
	12 0.043481	10.0.0.41	104.104.102.64	TCP	66	54033 → 443 [ACK] Seq=518 Ack=2897 Win=129600 Len=0 TSval=661315975 TSecr=3848679458	
	13 0.043906	104.104.102.64	10.0.0.41	TLSv1	1072	Application Data, Application Data, Application Data	
	14 0.043932	10.0.0.41	104.104.102.64	TCP	66	54033 → 443 [ACK] Seq=518 Ack=3903 Win=130048 Len=0 TSval=661315976 TSecr=3848679458	
	15 0.044789	104.104.102.64	10.0.0.41	TCP	66	443 → 54034 [ACK] Seq=1 Ack=518 Win=64768 Len=0 TSval=3848679461 TSecr=661315955	
	16 0.048352	104.104.102.64	10.0.0.41	TLSv1	1514	Server Hello, Change Cipher Spec, Application Data	
1	17 0 0/0260	104 104 102 64	10 0 0 /1	TCP	1514	443 - 54034 [PSH ACK] Sec-1449 Ack-518 Win-64768 Len-1448 TSval-3848679463 TSecr-661315	

- ▶ Uptions: (12 bytes), No-uperation (NUP), No-uperation (NUP), Timestamps
- ▶ [SEQ/ACK analysis]
- ▶ [Timestamps]

TCP payload (1448 bytes)

[Reassembled PDU in frame: 13]

TCP segment data (1448 bytes)

0040	e1 70 cd 3b ce a8 1b 41	48 d7 7a 42 aa 06 fc 0c	·p·;···A H·zB····
0050	ce d6 63 61 c7 76 67 28	12 e9 45 8a 79 62 d3 d6	··ca·vg(··E·yb··
0060	bb 08 83 4e eb 42 a2 94	12 d1 1d b0 7c f1 54 c7	· · · N · B · · · · · · · T ·
0070	0e 88 e2 02 5c 4e b3 53	c2 85 ce 23 89 91 76 5c	\N.S#v\
0080	1c fb 1f 99 2e 9f c8 4d	76 4f fc bf 4a 66 c0 7b	M v0Jf.{
0090			· h · · · · · L · X = · ·
00a0	b0 8d fd 92 7e fe a3 f5	75 3d b4 2b ef 70 2c 0c	····~·· u=·+·p,·
00b0			2 · · · B · Ø · do · · , sQ%
00c0	bf 8c 88 e1 b9 95 41 5a		· · · · · · AZ s · > 0 · · w ·
00d0			:/YmuE
00e0	79 e4 35 c6 96 c8 e9 91		v·5····· ··a·l···
00f0			· V · · · · · · · · · · TR ·
0100			· · · · P · m = · ` · · · · V · ?
0110			·d···C·· k"k··['·
0120			··u·q····trmq
0130			··+····' ·}··n···
0140			Q····Tl` ·\\$··E·x
0150		31 6c 55 c6 ca 0e fc 0a	T 1 U
0160			. 41.P
0170			X···b: · 4 ···· f···
0180	ff ed 32 93 ee 72 b4 b7		··2··r·· N·/··T··
0190	3e b9 be a2 c3 cc 56 e8		>·····V· 0··f··0·
01a0			Hs}:
01b0			.`~^.8.*
01c0			· o · · · q? · · 3a · > ·
	58 3b 3c 59 5c 66 4f f2		X; <y\f0. s]iyl<="" td=""></y\f0.>
0100	30 30 30 30 30 00 41 12	33 /C 30 d3 dd d9 39 dC	V' -1 (10, 2) 1 TI C

Common types

- HTTPS (TLS/SSL)
 - o and smtps, imaps, pop3s....
- > VPN
 - o ipsec, openvpn, others
- ▷ SSH
 - including all tunneled traffic
- ▷ DNS over TLS, DNS over HTTPS...

Unencrypted DNS

- Originally unencrypted
 - UDP and TCP port 53
 - Multicast DNS (UDP port 5353)
 - LLMNR (UDP and TCP port 5355)
- Can identify who even if we can't see what
- Netbios

Encrypted DNS

- Encrypted options
 - DNS over TLS (TCP port 853)
 - DOH (DNS over HTTPS (TCP port 443)
 - In construction: Oblivious DOH, DNS over QUIC
- Tougher to see who
- Blog on Name lookup
 - https://www.activecountermeasures.com/alternative-dns-techniques/

Options

- Not causing problems for security tools
 - Leave traffic as is
- Causing visibility problems
 - Block entirely
 - Must be able to identify with a firewall/IDS
 - Force through a proxy
 - Traffic unmodified, to log connections
 - Decrypt, inspect, encrypt, send on
 - Needs client trust
 - Privacy issues
- Provide service internally

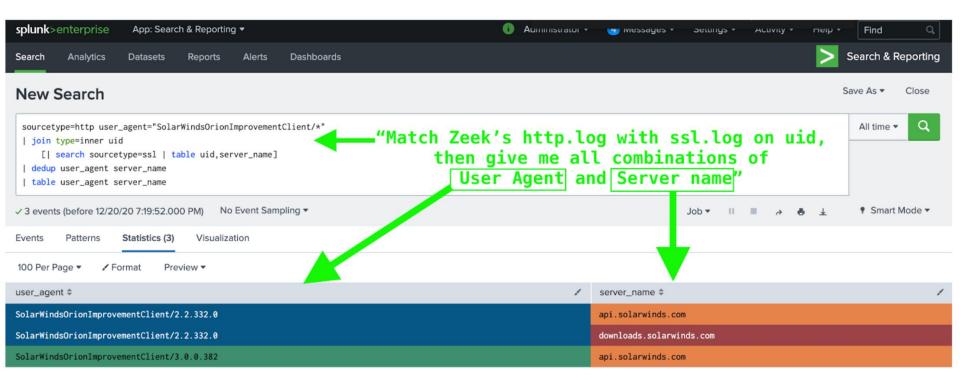
Identifying Encrypted Traffic

- ▷ SSH
 - o "SSH-"
- ▷ TLS
 - Can identify encryption types
- Zeek can find these and flag them

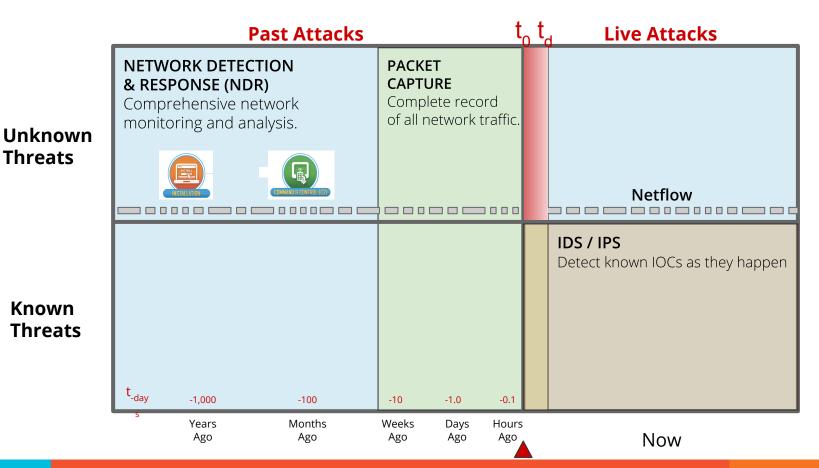
Analysis (Threat Hunting)

- Can't see what was said
 - Payload and metadata
- Can still see:
 - Beacons/Strobes
 - Long connections
 - Connections to Threat Intel hosts
 - TLS
 - Ja3 encryption negotiation (client signature)
 - certificate
- DNS depends

Encrypted Traffic in Zeek logs


```
{ [-]
  path: x509
  _system_name: corelight-suricata-demo
  _write_ts: 2020-10-30T02:48:57.615642Z
  basic_constraints.ca: false
  certificate.curve: prime256v1
  certificate.issuer: CN=GTS CA 101,0=Google Trust Services,C=US
  certificate.key_alg: id-ecPublicKey
  certificate.key_length: 256
  certificate.key_type: ecdsa
  certificate.not_valid_after: 2020-09-23T03:47:22.000000Z
  certificate.not valid before: 2020-07-01T03:47:22.000000Z
  certificate serial: 0CE54C4E0C98EA9C080000000004AAB73
  certificate.sig_alg: sha256WithRSAEncryption
  certificate.subject: CN=upload.video.google.com,O=Google LLC,L=Mountain View,ST=California,C=US
  certificate.version: 3
  id: FfYNRg39iyaCYKxVq5
  san.dns: [ [-]
    upload.video.google.com
    *.clients.google.com
    *.docs.google.com
    *.drive.google.com
    *.gdata.youtube.com
    *.googleapis.com
    *.photos.google.com
    *.upload.google.com
    *.upload.youtube.com
    *.youtube-3rd-party.com
    upload.google.com
    upload.youtube.com
    uploads.stage.gdata.youtube.com
  ts: 2020-10-30T02:48:57 6156427
```

```
[-]
   _path: ssl
   _system_name: corelight-suricata-demo
   _write_ts: 2020-10-30T02:48:57.615649Z
   cert_chain_fuids: [ [-]
    FfYNRg39iyaCYKxVq5
     F65RLd2WJouvSnWLrj
   cipher: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
   client_cert_chain_fuids: [ [-]
   curve: secp256r1
   encrypted_dns_resp_h: false
   established: true
   id.orig_h: 10.7.17.103
   id.orig_p: 49573
   id.resp_h: 172.217.164.131
   id.resp_p: 443
   issuer: CN=GTS CA 101,0=Google Trust Services,C=US
   ia3: 205200cdaac61b110838556b834070d1
   ja3s: 84aaf6d03fc8c5bfb56d1d188735b268
   resumed: false
   server_name: update.googleapis.com
   subject: CN=upload.video.google.com,O=Google LLC,L=Mountain View,ST=California,C=US
   ts: 2020-10-30T02:48:57.615566Z
   uid: Cx02Dv4ZL9tgKfBlac
   validation_status: certificate has expired
   version: TLSv12
```


Exploit Detection in Certificates

```
event x509_certificate(f: fa_file, cert_ref: opaque of x509, cert: X509::Certificate)
           if ( cert?$key alg && cert$key alg == "id-ecPublicKey" &&! cert?$curve )
                   NOTICE([$note=Unknown X509 Curve, $f=f, $msq="ECC certificate with unknown curve; potential CVE-2020-0601 exploit attempt"]);
                   if ( log_certs )
                           Log::write(CVE 2020 0601::LOG, Info($ts=network time(), $fuid=f$id, $certificate=encode base64(x509 get certificate string(cert ref, F))));
    event ssl session ticket_handshake(c: connection, ticket_lifetime_hint: count, ticket: string)
18
            if ( /^..\x00{16}.../ in ticket && |ticket| > 56 && bytestring_to_count(sub_bytes(ticket, 35, 2))+56 == |ticket| )
                    NOTICE([$note=CVE 2020 13777 Server, $conn=c, $msq="Server potentially vulnerable to CVE-2020-13777 detected", $identifier=cat(c$id$orig h)]);
            }
22
    event ssl change cipher spec(c: connection, is orig: bool) &priority=-5
24
            if ( ! is orig | | ! c$ssl$resumed )
                     return;
            if ( c$ssl$qnutls ch )
                    NOTICE([$note=CVE_2020_13777_Resumed, $conn=c, $msq="Server potentially vulnerable to CVE-2020-13777 detected; client resumed with suspicious
```

Sunburst Anomaly

Retrospective Detection Made Easy

Threats

Known

SSH Visibility Starts In Open Source

auth_attempts: 0

cipher_alg: aes128-ctr

client: SSH-2.0-libssh2_1.4.3

compression_alg: none
cshka: ssh-rsa,ssh-dss

direction: INBOUND

hassh: 92674389fa1e47a27ddd8d9b63ecd42b

hasshAlgorithms: diffie-hellman-group14-sha1,diffie-hellman
cbc,rijndael-cbc@lysator.liu.se,aes192-cbc,aes128-cbc,blowfish
96,hmac-ripemd160,hmac-ripemd160@openssh.com;none

hasshServer: cca34b641961a75a15b91d1f1a13a3fb

hasshServerAlgorithms: ecdh-sha2-nistp256,ecdh-sha2-nistp38 sha1,diffie-hellman-group14-sha1,diffie-hellman-group1-sha1;ae gcm@openssh.com,aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,a sha1-etm@openssh.com,umac-64-etm@openssh.com,umac-128-etm@open etm@openssh.com,hmac-sha1-96-etm@openssh.com,hmac-md5-96-etm@o 256,hmac-sha2-512,hmac-ripemd160,hmac-ripemd160@openssh.com,hm

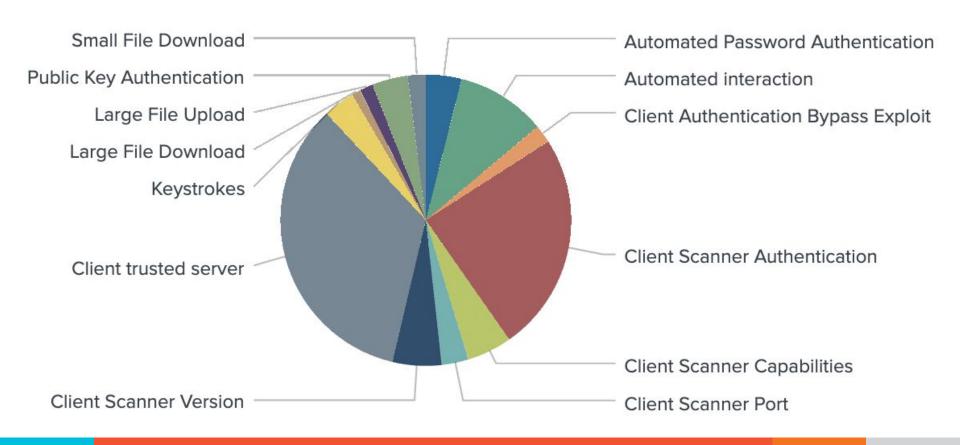
hasshVersion: 1.1

host_key: 24:ca:ee:e1:84:b3:0f:1a:17:86:c0:72:0a:8c:61:f6

host_key_alg: ssh-rsa

Home » **Corelight Labs** » Detecting OpenBSD CVE-2019-19521 SSH exploit attempts

Detecting OpenBSD CVE-2019-19521 SSH exploit attempts


December 6, 2019 by Anthony Kasza

ሥ master ▼

zeek / scripts / policy / protocols / ssh /

And Continues With Corelight's ETC

Encrypted Traffic: RITA, AC-Hunter

- Most Threat Hunt techniques still work
 - Beacons, Strobes, Long connections, Threat Intel,
 Client Signature, Certificate
- Potential issues
 - O DNS: encrypted or not?
 - Unexpected Protocol

References and Questions

- https://assets.corelight.com/portals/jsnbhy7x/zeekposter
- https://corelight.blog/2020/12/22/detecting-sunburst-solarigate-activity-in-retrospect-with-zeek-a-practical-example/
- https://corelight.blog/2020/06/18/dns-over-tls-and-dns-over-https/
- https://corelight.blog/2020/06/16/the-light-shines-even-brighter-updates-to-corelights-encrypted-traffic-collection/
- https://corelight.blog/2020/05/13/analyzing-encrypted-rdp-connections/
- https://corelight.blog/2020/01/17/day-1-detection-cve-2020-0601/
- https://www.activecountermeasures.com/free-tools/rita/
- https://www.activecountermeasures.com/ac-hunter-features/
- https://www.corelight.com/about-zeek/how-zeek-works
- https://corelight.blog/2019/12/06/detecting-openbsd-cve-2019-19521-ssh-exploit-a ttempts/
- https://www.activecountermeasures.com/alternative-dns-techniques/
- https://corelight.blog/2019/11/20/introducing-corelight-encrypted-traffic-collection/

Thanks!

- Ed, Vijit, John, and Roger from Corelight
- Shelby from Active Countermeasures
- Presenters Alex and Bill