

Network Threat Hunter Training

Level 1

Thanks to our sponsors!

2

Other courses I'm teaching

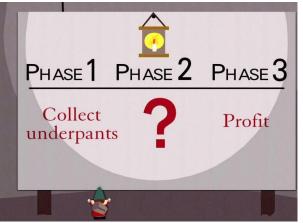
Advanced Network Threat Hunting
 3/22 - 3/25 (4 hours per day)
 \$495

https://www.antisyphontraining.com/advanced-network-threat-hunting-w-chris-brenton/

Getting Started with Packet Decoding
 2/15 - 2/18 (4 hours per day)
 Pay what you want, \$25+

https://www.antisyphontraining.com/event/getting-started-with-packet-decoding-w-chris-brenton/

Before we get started


- You'll need the class VM to do the labs
- Or run the install script
- Or deploy on DigitalOcean
- Login info:
 - Name: thunt
 - Pass: aybab2u
- ▷ This should have been done before class :-)
- Slides are available on Discord

Logistics

- ▷ 10 minute break at top of each hour
- ▷ 20 minute break at 3 hour point
- Use the Discord channel for discussion
 - #acm-webcast-chat channel
- > The team is monitoring for your questions

In this webcast

- I'm going to question some industry accepted standard practices
 - Because what we are doing is broken
 - And it's not getting any better
 - Will diverge from the norm
- Please keep an open mind
- Prime cognitive bias fodder

Modern attackers

- The vision of a lone hacker in the basement is dangerously outdated
- It's about profit, not mass infection
 - Attacks are now well funded
- Attacks are now targeted which means:
 - \circ $\,$ They do their homework on your environment $\,$
 - Malware is customized for your campaign
 - Attack infrastructure is customized as well
- Attackers innovate for each new target

How we (try to) catch the bad guys

- Centralized log collection
- Write "signatures" to identify patterns that may indicate an attack
 - Patterns in the log messages
 - Matches against intel feeds
- Alert on signature matches
- ▷ Follow up on alerts

Limitations of system logging

- Syslog was not designed for security
 - Facility 13 is "security/log audit"
 - But rarely used in a general security context
 - More appropriate as a severity level
 - But there is no "security" severity level
- No standard for message context
 - Different platforms log events differently
 - Different applications log events differently
- Decoder ring not included

Limitations of deployment

- Every device and system?
- Are you sure?
- Are you REALLY sure?
 - I have yet to see an environment that can accurately make this claim
 - $\circ~$ Even when you log, adversaries can disable this

"Fail open" system

- Can access Internet without logging and no alert
- Can you detect disabled logging?

What are signatures?

- Basically RegEx for logs
- Match known bad patterns
- Because adversaries have stopped innovating and we now know all of the possible bad patterns they can use
- ▷ Oh wait...
- Sigs are also the 1990's anti-virus model

Lack of innovation

- Log RegEx matching is old
 - Older than IDS
 - Older than firewalls
- First SANS logging course early 2000's
- Not much has changed

OK to still wear parachute pants?

Is there data showing it's broken?

- Persistent versus ransomware actors
 Oetect time shouldn't count on actor disclosure
- Dwell time for persistent is on the rise

https://www.crowdstrike.com/blog/2019-services-report-key-findings-part-1/

Dwell time ranges from 40 - 900 days

https://www.techrepublic.com/article/cybersecurity-malware-lingers-in-smbs-f or-an-average-of-800-days-before-discovery/

We are getting worse at self detection

https://investors.fireeye.com/news-releases/news-release-details/fireeye-mandi ant-m-trends-2020-report-reveals-cyber-criminals

So is log review threat hunting?

Just to review

- Protocol can't describe security events
- It's a fail open system
- We try to pattern match on old attack patterns
- False positive rates are extremely high
- It's old technology
- > The data says otherwise
- ▷ This process is clearly broken
- We need to assess new ideas and improve

I'm good, I use threat intel feeds

- Match on IP because someone said it's bad
- Also based on 1990's AV technology
- Is the data really actionable?
 - Adversaries frequently change IPs and DNS
 - Tend to use shared IP space
 - The accuracy is dependent on the reporter
- A threat intel match does not mean you've prevented an attack

Bing bot - false positive

This IP address has been reported a total of 142 times from 115 distinct sources. 23.101.169.3 was first reported on June 13th 2018, and the most recent report was 2 days ago.

Recent Reports: We have received reports of abusive activity from this IP address within the last week. It is potentially still actively engaged in abusive activities.

Reporter	11	Date	ţĵ	Comment	Categories
Anonymous		11 Jan 2019			Web Spam
Anonymous		03 Jan 2019			Web Spam Hacking Brute-Force
Anonymous		28 Dec 2018		Bing bot out of control. Still attempting to hit my site, eve n when banned.	Web Spam Bad Web Bot
Anonymous		26 Dec 2018		2200 blocked hits on my blog. Wordfence has blocked it. Wasn't sure what category to select (Br <u>show more</u>	Brute-Force
in Anonymous		25 Dec 2018		This ip showing as Microsoft Azure, location Chicago ha s been on all three of my blogs at Blogger an <u>show more</u>	Blog Sparn
Anonymous		23 Dec 2018		just blockd it	Brute-Force Bad Web Bot
Anonymous		21 Dec 2018		1465 website hits in one day - not sure why	Brute-Force
✓ Deny_IP		18 Dec 2018		US bad_bot	Web App Attack
Anonymous		16 Dec 2018		Runs all Javascript on page, showing up in Google Anal ytics and ad reporting as an individual unique show more	Web Spam Bad Web Bot

Sample threat feed

```
## Master Feed of known, active and non-sinkholed C&Cs IP
## addresses
##
## Feed generated at: 2019-07-11 15:12
##
## Feed Provided By: John Bambenek of Bambenek Consulting
## icb@bambenekconsulting.com // http://bambenekconsulting.com
## Use of this feed is governed by the license here:
## http://osint.bambenekconsulting.com/license.txt
##
## For more information on this feed go to:
## http://osint.bambenekconsulting.com/manual/c2-ipmasterlist.txt
##
## All times are in UTC
5.79.79.211.IP used by banjori C&C,2019-07-11 15:03, http://osint.bambenekconsulting.com/manual/banjori.txt
23.105.99.15, IP used by banjori C&C, 2019-07-11 15:03, http://osint.bambenekconsulting.com/manual/banjori.txt
23.107.124.53, IP used by banjori & C,2019-07-11 15:03, http://osint.bambenekconsulting.com/manual/banjori.txt
23.110.13.197, IP used by banjori C&C, 2019-07-11 15:03, http://osint.bambenekconsulting.com/manual/banjori.txt
23.236.62.147, IP used by banjori/ C&C,2019-07-11 15:03, http://osint.bambenekconsulting.com/manual/banjori.txt
23.89.102.179, IP used by banjori C&C, 2019-07-11 15:03, http://osint.bambenekconsulting.com/manual/banjori.txt
23.89.20.107, IP used by banjori C&C, 2019-07-11 15:03, http://psint.bambenekconsulting.com/manual/banjori.txt
27.124.28.149, IP used by banjori C&C, 2019-07-11 15:03, http://osint.bambenekconsulting.com/manual/banjori.txt
31.11.33.228, IP used by banjori d&C,2019-07-11 15:03, http://osint.bambenekconsulting.com/manual/banjori.txt
35.169.58.188, IP used by banjori &C,2019-07-11 15:03, http://osint.bambenekconsulting.com/manual/banjori.txt
35.186.238.101, IP used by banjori &C,2019-07-11 15:03, http://osint.bambenekconsulting.com/manual/banjori.txt
43.230.142.125.IP used by banjori Cac, 2019-07-11 15:03, http://osint.bambenekconsulting.com/manual/banjori.txt
43.241.196.105, IP used by banjori C&C 2019-07-11 15:03 http://osint.bambenekconsulting.com/manual/banjori.txt
```

Can I threat hunt with my NIDS?

SmarTTY-16771123148
File Edit View SCP Settings Help
cbrenton@cbrenton-lab-testing:/var/log/suricata\$ head -2 fast.log
01/30/2018-18:17:06.337205 [**] [1:2027390:2] ET USER AGENTS Microsoft Device Metadata Retrieval client Us
er-Agent [**] [Classification: Unknown Traffic] [Priority: 3] {TCP} 10.55.182.100:14314 -> 104.79.151.15:80
01/30/2018-18:17:07.017556 [**] [1:2027390:2] ET USER AGENTS Microsoft Device Metadata Retrieval Client Us
er-Agent [**] [Classification: Unknown Traffic] [Priority: 3] {TCP} 10.55.182.100:14317 -> 104.79.151.15:80
cbrenton@cbrenton-lab-testing:/var/log/suricata\$ grep -v 'Microsoft Device Metadata Retrieval' fast.log h
ead -2
01/30/2018-18:17:06.662884 [**] [1:2025275:1] ET INFO Windows OS Submitting USB Metadata to Microsoft [**]
[Classification: Misc activity] [Priority: 3] {TCP} 10.55.182.100:14315 -> 40.80.145.38:80
01/30/2018-18:17:06.903781 [**] [1:2025275:1] ET INFO Windows OS Submitting USB Metadata to Microsoft [**]
[Classification: Misc activity] [Priority: 3] {TCP} 10.55.182.100:14315 -> 40.80.145.38:80
cbrenton@cbrenton-lab-testing:/var/log/suricata\$ grep -v 'Microsoft Device Metadata Retrieval' fast.log g
rep -v 'INFO Windows OS Submitting' head -2
01/30/2018-21:12:15.378653 [**] [1:2027758:2] ET DNS Query for .cc TLD [**] [Classification: Potentially B
ad Traffic] [Priority: 2] {UDP} 10.55.200.10:53219 -> 172.16.200.11:53
01/30/2018-23:17:10.330756 [**] [1:2027758:2] ET DNS Query for .cc TLD [**] [Classification: Potentially B
ad Traffic] [Priority: 2] {UDP} 10.55.200.10:54451 -> 172.16.200.11:53
cbrenton@cbrenton-lab-testing:/var/log/suricata\$ grep -v 'Microsoft Device Metadata Retrieval' fast.log g
rep -v 'INFO Windows OS Submitting' grep -v 'DNS Query for .cc' head -2
cbrenton@cbrenton-lab-testing:/var/log/suricata\$
chrentrefichenter labeleting harlogherica
SCP. No transfers

But empire and dnscat2 were missed

What Threat Hunting should be

- A proactive validation of all systems
 connected to the organization's network
- Needs to include all systems
 - Desktops, laptops, cellphones, tablets
 - Servers, network gear, printers
 - IoT, IIoT, any type of Internet "Thing"
- Execute without making assumptions
- Deliverable is a compromise assessment

The Purpose of Threat Hunting

Protection

Firewalls Intrusion Detection VPNs Proxies Anti-Virus 2-Factor Authentication Pentesting Auditing Dwell time is 6+ months for persistent connections

Threat Hunting should reduce the gap between protection failure and response as much as possible!

Response

Incident Handling Log Review Forensics Public Relations Cyber Insurance

What threat hunting is not

- Managing SOC alerts
- Check logs for suspect activity
- Check dashboards for unusual activity
- Monitor and respond to EDR alerts
- > These are all reactive activities
- > Threat hunting is a proactive process

The process of threat hunting

- Review the integrity of every device
 Desktops converse notwork seer lot list of
 - Desktops, servers, network gear, IoT, IIoT, etc.
- Generate one of 3 dispositions
 - I'm pretty certain the system is safe
 - I'm pretty certain the system is compromised
 - I'm unsure of state so will collect additional info to derive one of the above two results
- Leverage context for host log review

Proposal - Start with the network

- > The network is the great equalizer
 - You see everything, regardless of platform
 - High level assessment of the terrain
- You can hide processes but not packets
- Malware is usually controlled
 - Which makes targeting C2 extremely effective
 - Identify compromise when C2 "calls home"
 - Must be frequent enough to be useful
- Wide view so you can target from there

Start on the network

THEN pivot to the system logs

ull screen Share Clone Edit							
じ v source.ip:192.168.99.51 and destination.ip:104.248.234.238	KQL 🛱 🗸 .	KQL					
∋ - + Add filter							
	Source IP 192.168.99.51	Source Hostname DESKTOP-10ACM		Destination IP 104.248.234.238			
Fop 10 Destination Ports	Events	06.00 0000 per 10 minutes	12:00	15:00	18:00	• Count 21	
	Program List Executable C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe	PID User 6,416 Jean-Luc Picard	Destination Port ≎ 80	Protocol ≎ http	Transport a	Count	

C2 Detection Techniques

Where to Start

- Traffic to and from the Internet
 Monitor internal interface of firewall
- Packet captures or Zeek data
- Analyze in large time blocks
 - More data = better fidelity
 - Minimum of 12 hours, 24 is ideal
- Analyze communications in pairs
 - Every outbound session passing the firewall
 - Ignore internal to internal (high false positive)

Threat score system

- Our job is to disposition IPs
- ▷ How do you know when to make a choice?
- ▷ A numeric system can help guide you
 - Score of 0 = system is safe
 - Score of 100 = system is compromised
- Score modifiers
 - Major A clue that strongly indicates integrity state
 - Minor A clue that peripherally indicates integrity state

Score examples

- Major score modifier
 - Persistency of connection
 - Unexpected protocol on well known port
 - Moving lots of data to a threat intel IP address
- Minor modifier
 - Moving lots of data to a random IP
 - Unique client signature
 - self signed digital certificate
 - EV digital certificate (reduce score)

Threat hunting process order

- Persistent connection?
 - No = No further action required
 - \circ Yes = Go to next step
- Abnormal protocol behaviour?
- Reputation check of external IP
- Investigation of internal IP
- Disposition
 - Safe = whitelist
 - Compromised = incident handling

Does targeting C2 have blind spots?

- Attackers motivated by gain
 - Information
 - Control of resources
- Sometimes "gain" does not require C2
 - Just looking to destroy the target
 - Equivalent to dropping a cyber bomb
 - We are talking nation state at this level
- NotPetya
 - Worm with no C2 designed to seek and destroy

Techniques Vs Methodology

- ▷ We are going to deep dive on finding C2
- It's important to understand what needs to happen "under the hood"
- Some of these techniques don't scale
 - Manually breaking out connection pairs
 - But that's OK
- Will focus on tools in a later module
- ▷ For now, focus on just the techniques

Bad guys Vs. Red Teams

- Bad guys = C2 is part of a business model
- Red team = C2 is why they get paid
- Much harder to detect red team C2 than the real bad guys
 - In the wild, most evil C2 beacons <= 1/minute
 - Red team on long term contract <= 1/week
- ▷ Focus will be on the bad guys

Long connections

- ▷ You are looking for:
- > Total time for each connection
 - Which ones have gone on the longest?
- Cumulative time for all pair connections
 - \circ $\,$ Total amount of time the pair has been in contact $\,$
- Can be useful to ignore ports or protocols
 - C2 can change channels

Long connection examples

24 Hours

SYN

FIN

		.		a 2 a 1		.		• • • •	
SYN	FIN	SYN	FIN	SYN	FIN	SYN	FIN	SYN	I FIN

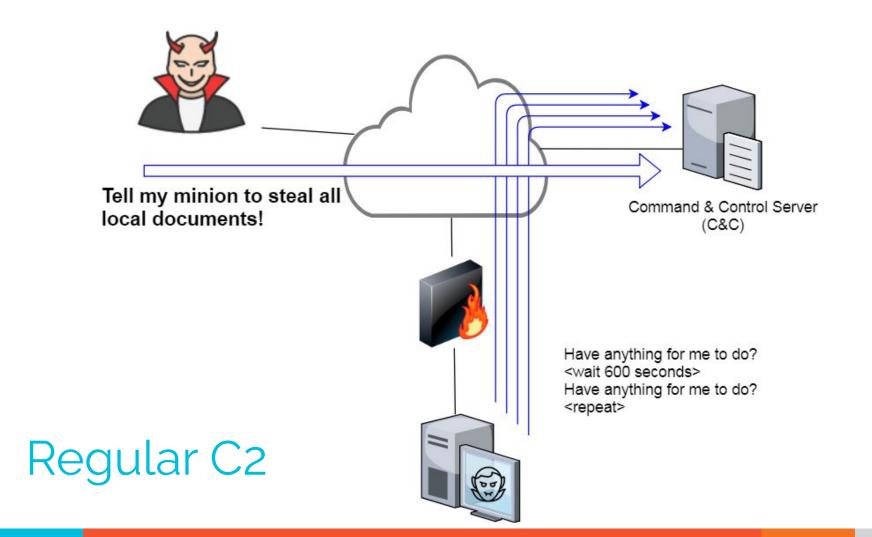
Connection timing from Zeek

cbrentor #separat	n@zeek-3- cor ∖x09	-3-rc2:/0	opt/bro/1	logs/2019	9-07-17\$	zcat cor	nn.00\:00)\:00-01	\:00 \: 00	.log.gz	head -	10
#set sep	parator	,										
#empty f		(empty)										
#unset f												
	conn											
	2019-07-	-17-00-00	0-00									
#fields		uid	id.orig	h	id.orig	q	id.resp	h	id.resp	q	proto	ser
vice	duration	1	orig by		resp byt		conn sta		local of		local r	esp
missed t	oytes	history	orig pkt		orig ip		resp pkt	LS.	resp ip		tunnel	
nts -												
#types	time	string	addr	port	addr	port	enum	string	interval	1	count	cou
nt	string	bool	bool	count	string	count	count	count	count	set[str	ing]	
15633215	592.26621	16	CRP5W73	KxGUYtn22	KQh -	185.176.	27.30	48086	104.248	.191.205	20391	tcp
- (0.265051		0	0	REJ	F	F	0	SrR	2	80	1
40	(empty)											
1563321592.266218			CjZ8aQ2AoHDrsheUAj			185.176.27		27.30 48086		104.248.191.205		tcp
-	0.265051		0	0	REJ	F	F	0	SrR	2	80	1
40	(empty)											
cbrentor	n@zeek-3-	-3-rc2:/0	opt/bro/1	logs/2019	9-07-17\$							

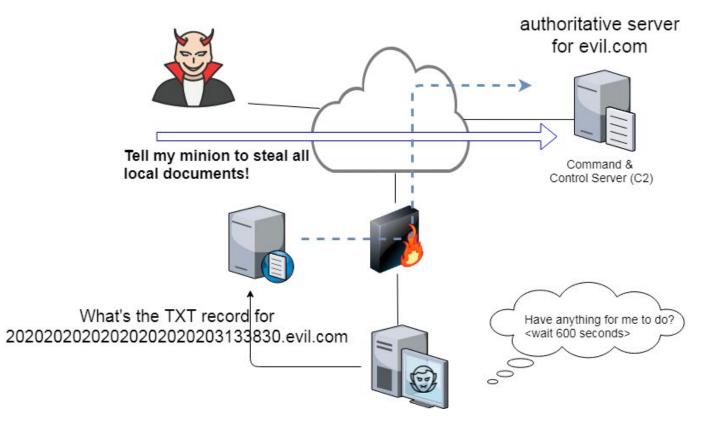
less -S -x20 conn.log

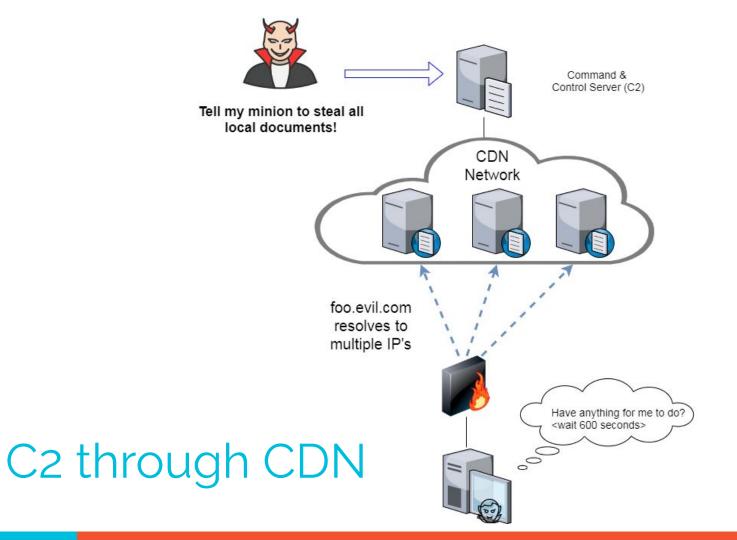
<pre>#separator \x09</pre>				1
<pre>#set_separator</pre>	,			
#empty_field	(empty)			
#unset_field				
#path	conn			
#open	2021-10-13-15-47-50			
#fields	ts	uid	id.orig_h	id.orig_p
#types	time	string	addr	port
1599652681.658987	Ci09jy2pQa8n4Nhpnk	192.168.125.105	43742	91.189.88.142
1599652681.909864	C7ebxg76JCvTenVC4	192.168.125.105	55418	91.189.91.38
1599652682.160692	Ciy54Bgp1AAP3g3Ai	192.168.125.105	56374	91.189.88.152
1599652682.411596	CIJ8Xh4WAfju0gEub6	192.168.125.105	36338	91.189.91.39
1599652681.643945	CfGhY0bXVYn9DET8	127.0.0.1	33915	127.0.0.53
1599652681.644119	CPCY5P1CD1nAxjVHG7	192.168.125.105	53240	8.8.8.8
1599652681.651291	CiKUI24evOEENjqzg5	127.0.0.1	58816	127.0.0.53
1599652681.651392	CEY8xNH9QzkxBCGvl	192.168.125.105	38521	8.8.8.8
1599652681.651543	CZs8CI12RnoQOgn0dg	192.168.125.105	55633	8.8.8.8

Cumulative talk time with Zeek


thunt@thunt-labs:~/lab1\$ cat co	<pre>nn.log zeek-cut id.orig_h id.resp_h duration sort</pre>
grep -v -e '^\$' grep -v '-'	datamash -g 1,2 sum 3 sort -k 3 -rn head
192.168.99.51 167.71.97.235	86389.659357
192.168.99.51 52.179.219.14	4067.394413
192.168.99.51 52.184.217.56	2936.172839
192.168.99.51 52.184.216.246	2825.858
192.168.99.52 239.255.255.250	2507.626732
fe80::d048:42e0:8448:187c	ff02::c 2434.977049
192.168.99.51 239.255.255.250	2374.546469
fe80::2126:bcd7:16f4:8cdb	ff02::c 2368.234679
192.168.99.51 13.107.5.88	1317.047871
192.168.99.51 52.167.249.196	868.46966
thunt@thunt-labs:~/lab1\$	

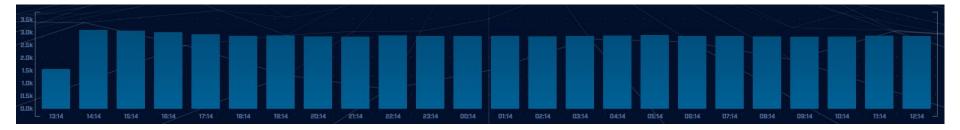
What about firewalls?


- Surprisingly hard to get this info
- ▷ "Timing" tends to be TTL, not duration
- ⊳ BSD
 - pftop output connection age in seconds
- Junos
 - \circ $\,$ show security flow session extensive node all
 - Duration in seconds


What is a beacon?

- Repetitive connection establishment between two IP addresses
 - Easiest to detect
- Repetitive connection establishment
 between internal IP and FQDN
 - Beacon broken up over multiple IP's
 - Usually a CDN provider
 - Target IPs also destination for legitimate traffic
 - Far more difficult to detect

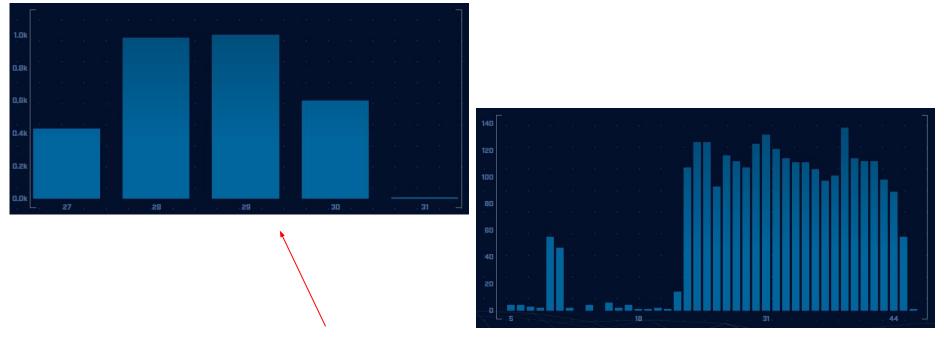
C2 over DNS



Beacon detection based on timing

- May follow an exact time interval
 - Technique is less common today
 - Detectable by k-means
 - Potential false positives
- May introduce "jitter"
 - Vary connection sleep delta
 - Avoids k-means detection
 - False positives are extremely rare
- Short enough delta for terminal activities

Connection quantity VS time


Each bar represents the number of times the source connected to the destination during that one hour time block

Connect time deltas with no jitter

70k															
60k	12														
50k	×.														
29	181														
40k															
30k	370														
20k	18	2													
10k	- 12	2													
-	3.53														
Ok	1		-	118	×	235	 3	152	469	. 586	al Ì	703	S	820	

How often a specific time delta was observed

Connection time deltas with jitter

Cobalt Strike will typically produce a bell curve

Detection based on session size

- Focuses on detection of the heartbeat
- Variations from the heartbeat indicate activation of C2 channel
- Session size can help reveal info regarding commands being issued
- Possible to randomly pad but this is extremely rare

Session size analysis

100k																	
BOk																	
-																	
60k																	
			- 33														
40k																	
20k			- 28														
			÷														
Ok	- 60			99		138	8	17	7		21	16		. 25	55		_
										_		/					
		He	ear	tbe	at					Ac	tiva	atic	n				

Session size analysis with Zeek

ritabeakerlab@ritabeakerlab:~/lab1\$ cat conn*.log | bro-cut id.orig_h id.resp_h orig_bytes | grep 68.183.1
38.51 | sort | uniq -c | sort -rn | head
2868 10.0.2.15 68.183.138.51 546
1 10.0.2.15 68.183.138.51 ritabeakerlab@ritabeakerlab:~/lab1\$

Heartbeat only Not yet in use!

Detecting beacons with jitter

- Easier to detect when normalized out over long periods of time
 - Average the time deltas for each hour
 - Plot over 24 hours
- Should make a beacon even more suspect
 - False positives don't obscure their beacon timing
 - High probability of being evil

Is there a business need?

Potential false positives

- ▷ False positives will not show signs of jitter
- Some common false positives:
 - NTP
 - Windows message bus, widgets, etc.
 - Some remote desktop tools
- More of a miscatorization:
 - Long connections with pauses longer than the timeout of your monitoring tool
 - Zeek timeout defaults to 5 minutes
 - Some MS traffic pauses for 35 minutes

C2 Detection Techniques Part 2

Minor modifiers for review

- Protocol compliance
- External IP address
- Internal IP address

Unexpected app or port usage

- There should be a business need for all outbound protocols
- Research non-standard or unknown ports
 - TCP/5222 (Chrome remote desktop)
 - TCP/5800 & 590X (VNC)
 - TCP/502 (Modbus)

Unknown app on standard port

- C2 wants to tunnel out of environment
 - Pick a port likely to be permitted outbound
 - Does not always worry about protocol compliance
- Check standard ports for unexpected apps
 Indication of tunneling
- Different than app on non-standard port
 - This is sometimes done as "a feature"
 - Example: SSH listening on TCP/2222

Zeek decodes many apps

- Detect over 50 applications
 HTTP, DNS, SIP, MYSQL, RDP, NTLM, etc. etc.
- ▷ Fairly easy to add new ones
 - Example: HL7 if you are in healthcare
- Checks all analyzers for each port
- Does not assume WKP = application

Zeek example

cat conn.log | zeek-cut id.orig_h id.resp_h id.resp_p proto service orig_bytes
resp_bytes | column -t | head

192.168.99.52	224.0.0.251	5353	udp	dns	213	0
fe80::d048:42e0:8448:187c	ff02 :: fb	5353	udp	dns	116	0
fe80::d048:42e0:8448:187c	ff02::1:3	5355	udp	dns	-	-
192.168.99.52	224.0.0.252	5355	udp	dns	-	-
192.168.99.52	192.168.99.1	67	udp	dhcp	316	300
fe80::d048:42e0:8448:187c	ff02::16	0	icmp	-	100	0
192.168.99.52	224.0.0.251	5353	udp	dns	-	-
192.168.99.51	224.0.0.251	5353	udp	dns	116	0
fe80::2126:bcd7:16f4:8cdb	ff02 :: fb	5353	udp	dns	116	0
fe80::2126:bcd7:16f4:8cdb	ff02::1:3	5355	udp	dns	-	-

Unexpected protocol use

- Attackers may bend but not break rules
- ▷ This can result in:
 - Full protocol compliance
 - Abnormal behaviour
- Need to understand "normal"
 - For the protocol
 - For your environment

Example: Too many FQDNs

- How many FQDNs do domains expose?
 - \circ Most is < 10
 - Recognizable Internet based vendors 200 600
 - Microsoft
 - Akamai
 - Google
 - Amazon
- ▷ Greater than 1,000 is suspicious
- Could be an indication of C2 traffic

Detecting C2 over DNS

- Capture all DNS traffic
 - Capture tool of your choice
 - Longer the capture time, the better
- Filter so it's DNS traffic only
- Extract to text so we can sort and count
- Review total FQDNs per domain

Counting FQDNs per domain

cbrenton@cbrenton-lab-testing:~/lab-thunt\$ tshark -r thunt-lab.pcapng -T fields -e dn s.qry.name | sort | uniq | rev | cut -d '.' -f 1-2 | rev | sort | uniq -c | sort -rn | head -10

- 62468 r-1x.com
 - 154 akamaiedge.net
 - 125 akadns.net
 - 121 edgekey.net
 - 104 amazonaws.com
 - 67 microsoft.com
 - 51 dynect.net
 - 45 parsely.com
 - 44 akam.net
 - 43 cloudfront.net

cbrenton@cbrenton-lab-testing:~/lab-thunt\$

Breaking it down

cbrenton@cbrenton-lab-testing:~/lab-thunt\$ tshark -r thunt-lab.pcapng -T fields -e dn s.qry.name | sort | uniq | head -4

0000011239458783cf.dnsc.r-1x.com 00000176d2f1ce66e2.dnsc.r-1x.com 0001011239458783cf.dnsc.r-1x.com cbrenton@cbrenton-lab-testing:~/lab-thunt\$ tshark -r thunt-lab.pcapng -T fields -e dn s.qry.name | sort | uniq | rev | head -4

moc.x1-r.csnd.fc3878549321100000
moc.x1-r.csnd.2e66ec1f2d67100000
moc.x1-r.csnd.fc3878549321101000
cbrenton@cbrenton-lab-testing:~/lab-thunt\$ tshark -r thunt-lab.pcapng -T fields -e dn
s.qry.name | sort | uniq | rev | cut -d '.' -f 1-2 | rev | head -4

r-1x.com

r-1x.com r-1x.com Cut out subdomains and reverse characters on the line. We can now count the number of unique FQDNs queried per domain

Bonus checks on DNS

- Check domains with a lot of FQDNs
- Get a list of the IPs returned
- Compare against traffic patterns
 - Are internal hosts visiting this domain?
 - Is it just your name servers?
- Unique trait of C2 over DNS
 - Lots or FQDN queries
 - But no one ever connects to these systems

Normal DNS query patten

Subdomain Threshold		e e e e es		* * * * * * * * * * *		2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2		UNTER
(4) 4								DATABASE: DNSCAT2-BEACON MODULE: DNS VIEW: DNS ANALYSIS
	Subdomains	Lookups	Domain					
an a	62468	109227	r-1x.com				DNS Queries [3]	an an an ar a y a n an ar an ar
	62466	108911	dnsc.r-1x.com				Direct Connections [13]	Count
- 100 - 10 - 310 - 0	154	27381	akamaiedge.net				10.55.100.111	869 532
	125	13907	akadns.net				10.55.100.109 10.55.100.100	489 477
- 355 - 51 - 5 - 266 - 81	121	7110	edgekey.net				10.55.100.103 10.55.100.104	462 446
		13297	amazonaws.com				10.55.100.110 10.55.100.107	443 443
	90	13259	elb.amazonaws.com				10.55.100.106	442
					K K 1/9680	× >ı		

Things that make you go "hummm"

Subdomain Threshold	а е е е е 				8 8 8 9 9 8 8 8 8 9 8 8 8 8 8		UNTER DATABASE: DNSCAT2-BEACON MODULE: DNS
222 - 22							VIEW: DNS ANALYSIS
ini n	Subdomains	Lookups	Domain				
	· · · · · 62468 ·	109227	r-1x.com			DNS Queries ([1])	e se se s v e e
inan ar i	62466	108911	dnsc.r-1x.com			Direct Connections [1] Host	Count
	154	27381	akamaiedge.net			192.168.88.2	108858
	125	13907	akadns.net				
	121 s	7110	edgekey.net				
	101	13297	amazonaws.com				a car o car o car
	90	13259	elb.amazonaws.com				
				1< < 1/9680			

Look for unique HTTP user agents

cbrenton@aih-3-3-rc2:~/test/testing\$ cat http.08 33 18-09 00 00.log | bro-cut user agent sort | uniq -c | sort 1 -1 Python-urllib/3.5 22 Microsoft-WNS/10.0 26 Microsoft-CryptoAPI/10.0 30 Microsoft BITS/7.8 55 Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.17134.590 72 Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; rv:11.0) like Gecko cbrenton@aih-3-3-rc2:~/test/testing\$ cbrenton@aih-3-3-rc2:~/test/testing\$ cbrenton@aih-3-3-rc2:~/test/testing\$ grep Python http.08 33 18-09 00 00.log 1552574001.145136 CLLPdJ1nLAOdIIwyHe 10.55.254.107 42292 91.189.95.15 80 changelogs.ubuntu.com /meta-release-lts 1 GET 1.1 Python-urllib/3.5 0 4386 200 (empty) -OK FhGf5d4pejzo70b311 text/plain

cbrenton@aih-3-3-rc2:~/test/testing\$

Unique SSL Client Hello: Zeek + JA3

SSL/TLS Hash	Seen Requests	Sources
		a x x x x a x
5e573c9c9f8ba720ef9b18e9fce2e2f7	1 clientservices.googleapis.com	10.55.182.100
		e e a a a e e e e e e e e e e e e e e e
bc6c386f480ee97b9d9e52d472b772d8	2 clients4.google.com, 556-emw-319.mktoresp.com	10.55.182.100
f3405aa9ca597089a55cf8c62754de84	2 builds.cdn.getgo.com	10.55.182.100
28a2c9bd18a11de089ef85a160da29e4	2 mediaredirect.microsoft.com	10.55.100.105, 10.55.182.100
08bf94d7f3200a537b5e3b76b06e02a2	4 files01.netgate.com	192.168.88.2

Check destination IP address

Start simple

- Who manages ASN?
- Geolocation info?
- IP delegation
- PTR records
- Do you recognize the target organization?
 - Business partner or field office
 - Current vendor (active status)
- Other internal IP's connecting?

Check threat intel on target IP

Need to understand:

- When was the record first created?
- Why was the record created?

https://www.abuseipdb.com/check/<ip address> https://dnslytics.com/ip/<IP address> https://transparencyreport.google.com/safe-browsing/search?url=<IP, FQDN or URL>

Internal system

- Info available varies greatly between orgs
- Inventory management systems
- Security tools like Carbon Black
- OS projects like BeaKer
- Internal security scans
- DHCP logs
- Login events
- Passive fingerprinting

Leverage internal host logging

- Network shows suspicious traffic patterns
- Use this data to pivot to host logs
- ▷ Filter your logs based on:
 - Suspect internal host
 - Timeframe being analyzed
- Anything stand out as unique or odd?

Sysmon Event ID Type 3's

Seneral Details			
Friendly View	View		
		*	
+ System			
- EventData			
RuleName			
UtcTime	2019-11-19 19:20:12.465		
ProcessGuid	{8FFDB2F1-BC9E-5DCB-0000-0010E4450D00}		
ProcessId	4448		
Image	C:\Users\chris\AppData\Local\slack\app-4.1.2\slack.exe		
User	chris-PC\chris		1
Protocol	tcp		
Initiated	true		ſ
SourceIsIpv6	false		U
SourceIp	10.0.204		
SourceHostnan	ne chris-PC.hsd1.fl.comcast.net		
SourcePort	43862		
SourcePortNan	ne		
DestinationIsIp	v6 false		
DestinationIp	13.226.93.151		
DestinationHos	stname server-13-226-93-151.atl52.r.cloudfront.net		
DestinationPor	t 443		
DestinationPor	tName https		

Map outbound connections to the applications that created them.

Sysmon Type 3 + BeaKer

But I have no system logs!

- Might be a good time to start collecting them
- Full packet captures from system
- Apply additional network tools to collect more data

What next?

- Assign points to connection persistence
 How certain are you that it's automated?
- Assign points to the protocol review
- Assign points to the endpoint research
- Remember negative points are OK
- Add the score, how certain are you?
 - Safe = add to whitelist
 - Scary = Trigger incident response
 - Still unsure = Collect more data

C2 Detection Tools

tcpdump

- What's it good for?
 - Lightweight packet capturing tool
 - Cross platform support (windump on Windows)
- When to use it
 - Audit trail of all traffic
 - Can also filter to see only specific traffic
 - Can be fully automated
- Where to get it

Tcpdump example

- Debian/Ubuntu
 - Place the following in /etc/rc.local
- Red Hat/CentOS, Fedora
 - Place the following in /etc/rc.d/rc.local
- Grabs all traffic and rotates every 60 min
 - Date/time stamped and compressed

```
#Place _above_ any "exit" line
mkdir -p /opt/pcaps
screen -S capture -t capture -d -m bash -c "tcpdump -ieth0 -G
3600 -w '/opt/pcaps/`hostname -s`.%Y%m%d%H%M%S.pcap' -z bzip2"
```

tshark

What's it good for?

- Extracting interesting fields from packet captures
- Multiple passes to focus on different attributes
- Combine with text manipulation tools
- Can be automated
- When to use it
 - Both major and minor attributes
- ▷ Where to get it

Tshark example - DNS queries

\$ tshark -r thunt-lab.pcapng -T fields -e dns.qry.name udp.port==53 | head -10

6dde0175375169c68f.dnsc.r-1x.com 6dde0175375169c68f.dnsc.r-1x.com 0b320175375169c68f.dnsc.r-1x.com 0b320175375169c68f.dnsc.r-1x.com 344b0175375169c68f.dnsc.r-1x.com 344b0175375169c68f.dnsc.r-1x.com 0f370175375169c68f.dnsc.r-1x.com 0f370175375169c68f.dnsc.r-1x.com 251e0175375169c68f.dnsc.r-1x.com 251e0175375169c68f.dnsc.r-1x.com

Tshark example - user agents

\$ tshark -r sample.pcap -T fields -e http.user_agent tcp.

- dstport==80 | sort | uniq -c | sort -n | head -10
 - 2 Microsoft Office/16.0
 - 2 Valve/Steam HTTP Client 1.0 (client; windows; 10; 1551832902)
 - 3 Valve/Steam HTTP Client 1.0
 - 11 Microsoft BITS/7.5
 - 11 Windows-Update-Agent
 - 12 Microsoft-CryptoAPI/6.1
 - 104 PCU

Wireshark

- What's it good for?
 - Packet analysis with guardrails
 - Stream level summaries
- When to use it
 - As part of a manual analysis
 - When steps cannot be automated
- Where to get it

https://www.wireshark.org/

Useful when I have a target

ip.addr	== 148.78.247.10				Expr	ression
	Time	Source	Destination	Protocol	Length Info	
	98594 678,865097	148.78.247.10	12.33.247.4	TAP	78 25258 + 80 [SYN] Sau=0 Win=6	553
	98595 678.865219	12.33.247.4	148.78.247.10	TCP	78 80 → 26268 [SYN, ACK] Seq=0	Ack
	98597 678.894523	148.78.247.10	12.33.247.4	TCP	70 26268 → 80 [ACK] Seq=1 Ack=1	Wi
	98599 678.896451	148.78.247.10	12.33.247.4	HTTP	225 HEAD / HTTP/1.0 [ETHERNET F	RAM
	98600 678.896515	12.33.247.4	148.78.247.10	TCP	70 80 → 26268 [ACK] Seq=1 Ack=1	56
	98601 678.899778	12.33.247.4	148.78.247.10	HTTP	211 HTTP/1.1 200 OK [ETHERNET F	RAM
	98602 678.899881	12.33.247.4	148.78.247.10	TCP	70 80 → 26268 [FIN, ACK] Seq=14	12 A
	98608 678.929234	148.78.247.10	12.33.247.4	TCP	70 [TCP Dup ACK 98597#1] 26268 -	→ 8
	98609 678.933213	148.78.247.10		TCP	70 26268 → 80 [ACK] Seq=156 Ack	=14
	98610 678.933475	148.78.247.10	12.33.247.4	TCP	70 26268 → 80 [FIN, ACK] Seq=15	6 A
	98611 678.933517	12.33.247.4	148.78.247.10	TCP	70 80 → 26268 [ACK] Seq=143 Ack	
	98716 679.708532	148.78.247.10		TCP	78 26460 → 80 [SYN] Seq=0 Win=6	553
		III	1			,
nte rar Se De	n <mark>smission Control Proto</mark> Durce Port: 26268 Estination Port: 80	4, Src: 148.78.247.10,			d0:20:7d:e3)	
inte rar Sc [! Sc []	ernet Protocol Version smission Control Proto ource Port: 26268 estination Port: 80 Stream index: 648] FCP Segment Len: 0]	4, Src: 148.78.247.10, col, Src Port: 26268, D elative sequence number (relative sequence	Dst: 12.33.247.4 st Port: 80, Seq: 0, Ler)		d0:20:7d:e3)	
inte rar 50 [1 50 [1 40 10	ernet Protocol Version ismission Control Proto purce Port: 26268 estination Port: 80 Stream index: 648] ICP Segment Len: 0] requence number: 0 (re lext sequence number: 0 extowledgment number: 0 210 = Header Lengt	4, Src: 148.78.247.10, col, Src Port: 26268, D elative sequence number (relative sequence	Dst: 12.33.247.4 st Port: 80, Seq: 0, Ler)		d0:20:7d:e3)	
Inte frar De [! Se [1 Ae 10 F:	ernet Protocol Version ismission Control Proto purce Port: 26268 estination Port: 80 Stream index: 648] TCP Segment Len: 0] rquence number: 0 (r lext sequence number: 0 chnowledgment number: 0 endot = Header Lengt Lags: 0x002 (SYN)	4, Src: 148.78.247.10, col, Src Port: 26268, D elative sequence number (relative sequence h: 40 bytes (10)	Dst: 12.33.247.4 st Port: 80, Seq: 0, Ler) number)]		d0:20:7d:e3)	
nte Par 50 [! 50 [! Ad 10 20	Protocol Version Ismission Control Proto Durce Port: 26268 Stination Port: 80 Stream index: 648] ICP Segment Len: 0] aquence number: 0 cknowledgment number: 0 cknowledgment number: 0 log = Header Lengt Lags: 0x002 (SYN) 00 b0 d0 20 7d e3 005 00 3c f7 29 00 00 31 6 7 04 66 9c 06 56 64	 4, Src: 148.78.247.10, col, Src Port: 26268, D elative sequence number (relative sequence h: 40 bytes (10) 8b ea 20 ab 08 00 45 60 44 14 94 4e f7 0a 00; 77 ff 9d 00 00 00 at 05 b4 01 03 03 00 01 	Dst: 12.33.247.4 st Port: 80, Seq: 0, Ler) number)] i 00 }PE. : 21E. : 21E.		d0:20:7d:e3)	

Bro/Zeek

- Old name = Bro New name = Zeek
- What's it good for?
 - Near real time analysis
 - More storage friendly than pcaps
- ▷ When to use it
 - When you need to scale
 - When you know what attributes to review
- Where to get it

https://www.zeek.org/ sudo apt -y install zeek

Zeek example - cert check

\$ cat ssl* | zeek-cut id.orig_h id.resp_h id.resp_p validation_status | grep 'self signed' | sort | uniq 122.228.10.51 192.168.88.2 9943 self signed certificate in certificate chain 24.111.1.134 192.168.88.2 9943 self signed certificate in certificate chain 71.6.167.142 192.168.88.2 9943 self signed certificate in certificate chain

ngrep

- Pattern match on passing packets
- Like "grep" for network traffic
- Useful for quick checks
 - NIDS with signature better choice for long term
- Useful switches
 - o "-q" = Don't print "#" for non-matches
 - "-I" = Read a pcap file

https://github.com/jpr5/ngrep sudo apt install ngrep

Ngrep example

cbrenton@cbrenton-lab-testing:~/pcaps\$ ngrep -q -I odd.pcap Admin | head -15 input: odd.pcap match: Admin

T 148.78.247.10:26922 -> 12.33.247.4:80 [AP] GET /cfide/Administrator/startstop.html HTTP/1.0..Host: 12.33.247.4..User-Agent: Mozilla/5.0 [en] (Win 95; U)..Referer: http://12.33.247.4/..X-Forwarded-For: 148.64.147.168..Cache-Control: max-stale=0..Pra gma: no-cache.....Cv

T 12.33.247.4:80 -> 148.78.247.10:26922 [AP]

HTTP/1.1 404 Not Found..Date: Tue, 25 Jun 2002 00:34:58 GMT..Server: Apache..Connection: close..Conten t-Type: text/html; charset=iso-8859-1....<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">.<HTML><HEA D>.<TITLE>404 Not Found</TITLE>.</HEAD><BODY>.<H1>Not Found</H1>.The requested URL /cfide/Administrato r/startstop.html was not found on this server.<P>.</BODY></HTML>....

T 12.33.247.4:80 -> 148.78.247.10:26922 [AFP] cbrenton@cbrenton-lab-testing:~/pcaps\$

Datamash

What's it good for?

- Similar to the R-base tools, but more extensive
- Performing simple calculation on data
- When to use it
 - Performing calculations on multiple lines
 - Statistical analysis

Where to get it

https://www.gnu.org/software/datamash/ sudo apt install datamash

Datamash example

cbrenton@cbrenton-lab-testing:~/lab3\$ cat conn.log zeek-cut				
id.orig_h id.re	esp_h duration	sort -k3 -rn head -5		
192.168.1.105	143.166.11.10	328.754946		
192.168.1.104	63.245.221.11	^{41.884228} Duplicate entries		
192.168.1.104	63.245.221.11	31.428539 Duplicate entries		
192.168.1.105	143.166.11.10	27.606923		
192.168.1.102	192.168.1.1	4.190865		

cbrenton@cbrent	on-lab-testing:	-/lab3\$ cat conn.log zeek-cut	
id.orig_h id.re	esp_h duration	grep -v -e '^\$' grep -v '-' sort	
datamash -g 1,2	2 sum 3 sort -k3	3 -rn head -5	
192.168.1.105	143.166.11.10	356.361869	
192.168.1.104	63.245.221.11	73.312767	
192.168.1.102	192.168.1.1	5.464553	
192.168.1.103	192.168.1.1	4.956918	
192.168.1.105	192.168.1.1	1.99374	

RITA

- What's it good for?
 - Beacon & long conn at scale
 - Some secondary attributes
- When to use it
 - Can better organize Zeek data
 - Good when you are comfortable scripting
 - Will scale but can be time consuming
- Where to get it

https://github.com/activecm/rita

RITA example - beacons

cbrenton@cbrenton-lab-testing:~\$ rita show-beacons thunt-lab | head Score,Source IP,Destination IP,Connections,Avg. Bytes,Intvl Range,Size Range,Top Intv l,Top Size,Top Intvl Count,Top Size Count,Intvl Skew,Size Skew,Intvl Dispersion,Size Dispersion

1,10.55.100.111,165.227.216.194,20054,92,29,52,1,52,7774,20053,0,0,0 1,192.168.88.2,165.227.88.15,108858,199,860,230,1,89,53341,108319,0,0,0,0 0.838,10.55.200.10,205.251.194.64,210,308,29398,4,300,70,109,205,0,0,0,0 0.835,10.55.200.11,205.251.197.77,69,308,1197,4,300,70,38,68,0,0,0,0 0.834,10.55.100.111,34.239.169.214,34,1259,5,14388,1,156,15,30,0,0,0,0 0.834,192.168.88.2,13.107.5.2,27,198,2,33,12601,73,4,15,0,0,0,0 0.833,10.55.100.107,23.52.162.184,24,2397,43356,52,1800,467,18,18,0,0,0,0 0.833,10.55.100.107,23.52.161.212,24,5404,43235,52,1800,505,19,21,0,0,0,0 0.833,10.55.100.111,23.52.161.212,27,5379,37752,92,1800,505,17,20,0,0,0,0 cbrenton@cbrenton-lab-testing:~\$

Scale is 0 - 1 with 1.0 being a perfect beacon score

RITA example - C2 over DNS

thunt@thunt-one-day:~\$ rita show-exploded-dns test | head -10 Domain, Unique Subdomains, Times Looked Up cymru.com, 227, 502 hash.cymru.com,224,485 malware.hash.cymru.com,222,341 akadns.net,134,19282 edgekey.net, 116, 6342 akamaiedge.net,116,19680 microsoft.com, 91, 3116 amazonaws.com, 89, 6369 com.edgekey.net,83,5401 thunt@thunt-one-day:~\$

Passer

TC, 172.1.199.23, TCP 43, open, TC,172.16.199.23,TCP 55443,open, UC,172.16.199.23,UDP 626,open,serialnumberd/clientscanner likely nmap scan Warnings:scan UC,172.16.199.23,UDP 1194,open,openvpn/client Warnings:tunnel UC,172.16.199.23,UDP 3386,open,udp3386/client UC, 172.16.199.23, UDP 5632, open, pcanywherestat/clientscanner Warnings:scan UC,172.16.199.23,UDP 64738,open,shodan host/clientscanner abcdefgh Unlisted host Warnings:scan DN,2001:db8:1001:0000:0000:0000:0000:0015,AAAA,ns3.markmonitor.com., DN, fe80:0000:0000:189f:545b:7d4c:eeb8, PTR, Apple TV. device-info. tcp.local., model=J105aA

C2 Labs

What We Will Cover

- > This section is mostly hands on labs
- Implement what you have learned
- Lab format:
 - Given a problem
 - Use earlier content to help solve
 - Given hints
 - If you don't know where to start, try the hints
 - Given the exact commands
 - Solution
 - Complete walk through of the solution

Reminder

- All lab files are on the VM
 - \circ $\,$ No network access needed
- Login info
 - \circ Name = thunt
 - Password = aybab2u
- Labs are in /home/thunt/lab*

Find long connections

- Files located in /home/thunt/lab1
- Provided with pcap and Zeek log files
- Identify
 - Top 10 longest connections between private and legal IP addresses (internal to external)
 - Top 10 cumulative communication time between private and legal IP addresses (internal to external)

Find long conns - Hints

- Long connections is a relative term. You need to know the length of time being audited.
- Pcaps don't store connection duration
- Zeek stores duration in conn.log
- Zeek-cut extracts fields from Zeek logs
- Datamash is useful for adding values

Useful commands to try

capinfos -aeu <pcap file>

cat conn.log | zeek-cut id.orig_h
id.resp_h duration | sort -k 3 -rn | head

cat conn.log | zeek-cut id.orig_h
id.resp_h duration | sort | grep -v -e
'^\$' | grep -v '-' | datamash -g 1,2 sum 3
| sort -k 3 -rn | head

Long conns - Answers

- Need to ID how long the pcap captured
- Use Zeek conn.log to easily get duration
- Need to extract:
 - Source IP (id.orig_h)
 - Destination IP (id.resp_h)
 - Duration of each connection (duration)
- Need to be able to:
 - Add up connection time between IP's
 - Present longest results first

less -S -x20 conn.log

#separator \x09					
<pre>#set_separator</pre>	1				
#empty_field	(empty)				
#unset field					
#path	conn				
#open	2021-10-13-15-47-50				
#fields	ts	uid	(id.orig h)	id.orig p	id.resp h
#types	time	string 🖌	addr	port _	addr
1599652681.658987	Ci09jy2pQa8n4Nhpnk	192.168.125.105	43742	91.189.88.142	80
1599652681.909864	C7ebxg76JCvTenVC4	192.168.125.105	55418	91.189.91.38	80
1599652682.160692	Ciy54Bgp1AAP3g3Ai	192.168.125.105	56374	91.189.88.152	80
1599652682.411596	CIJ8Xh4WAfju0gEub6	192.168.125.105	36338	91.189.91.39	80

Identify time window being audited

thunt@thunt:~/lab1\$ capinfos -aeu trace1.pcap
File name: trace1.pcap
Capture duration: 86398.498096 seconds
First packet time: 2020-06-04 16:59:02.292525
Last packet time: 2020-06-05 16:59:00.790621
thunt@thunt:~/lab1\$

24 hours = 86,400 seconds

Plan B for files too large for capinfos:

tcpdump -tttt -n -r <filename> | awk 'NR==1; END{print}'

Longest unique connections

thunt@thunt:~/1	ab1\$ cat conn.lo	g <u> zeek-cut</u> id.orig h id.resp h duration sort -k 3 -rn head
192.168.99.51	167.71.97.235	86389.659357
192.168.99.51	104.248.234.238	243.768999
192.168.99.51	104.118.9.117	166.139547
192.168.99.51	72.21.91.29	134.888177
192.168.99.51	52.184.216.246	129.075227
192.168.99.51	52.167.249.196	128.957107
192.168.99.51	52.184.216.246	128.481757
192.168.99.51	13.107.5.88	128.346889
192.168.99.51	52.179.219.14	128.116421
192.168.99.51	13.107.5.88	128.042647
thunt@thunt:~/1	ab1\$	

Duration is just short of the full 86,398 second capture time

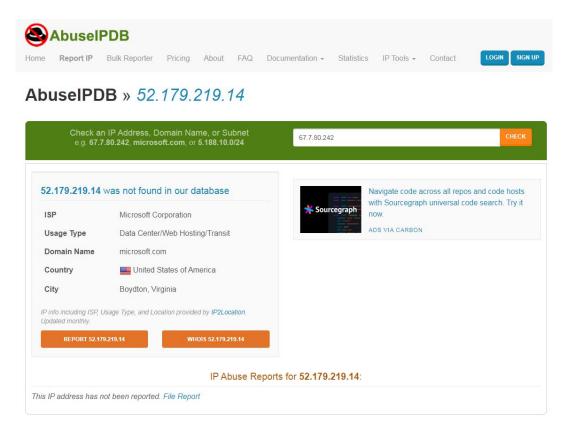
Longest talk time

thunt@thunt:~/lab1\$ cat conn.log | zeek-cut id.orig h id.resp h duration | sort grep -v '-' | datamash -g 1,2 sum 3 | sort -k 3 -rn | head 192.168.99.51 167.71.97.235 86389.659357 192.168.99.51 52.179.219.14 4067.394413 192.168.99.51 52.184.217.56 2936.172839 192.168.99.51 52.184.216.246 2825.858 192.168.99.52 239.255.255.250 2507.626732 fe80::d048:42e0:8448:187c ff02::c 2434.977049 192.168.99.51 239.255.255.250 2374.546469 fe80::2126:bcd7:16f4:8cdb ff02::c 2368.234679 192.168.99.51 13.107.5.88 1317.047871 192.168.99.51 52.167.249.196 868.46966 thunt@thunt:~/lab1\$

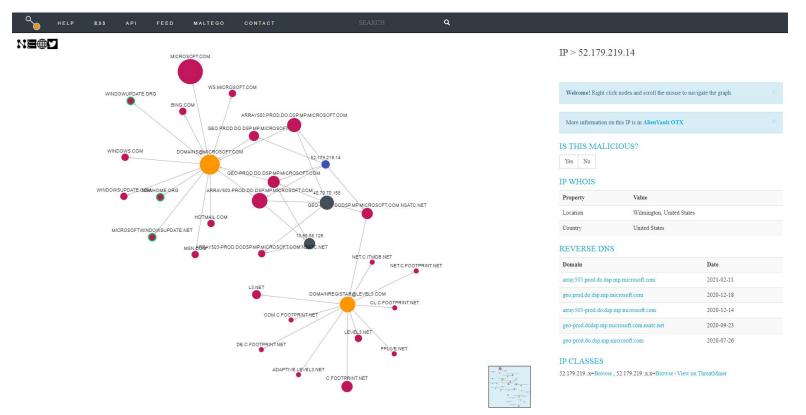
> Note the first entry is still the same, but all others are new. IPv6 addresses have shifted info to the right.

Investigate the longest talkers

- Let's investigate the external IP of the two longest session
 - 167.71.97.235
 - o **52.179.219.14**
- We'll use two common research methods
 - "host" command
 - AbuseIPDB
 - <u>https://www.abuseipdb.com/</u>
 - ThreatCrowd
 - https://www.threatcrowd.org/


Investigate - hints

- You were given the two IP addresses to research
- The "host" command is run from the command line
- Use a browser to connect to the two research Websites and enter each IP


One out of two is not bad

> Is there a business need for demo1.aihhosted.com? If so, that one connection can be considered safe.

AbuseIPDB data on 2nd IP

ThreatCrowd data on 2nd IP

Running down 52.179.219.14

- Looks like Windows calling home to Microsoft
- Can we verify this?
- Let's find the entry in conn.log and see if we can find corroborating data points

Looks like it's SSL/TLS traffic

thunt@thunt-labs:~/lab1\$ grep 52.179.219.14 conn.log head -5									
1591290650.4638	48	Ce8vuV9	pdZN1TTE2	21	192.168	.99.51	52863	52.179.	219.14
443 tcp	ssl	65.3893	72	1270	3035	SF	_		0
ShADadFf	14	1842	12	3527	—				
1591292050.4591	24	CbnymM80	GhENDKN6	ol	192.168	.99.51	52938	52.179.	219.14
443 tcp	ssl	95.40642	23	1270	3036	SF	_	—	0
ShADdaFf	14	1842	12	3528					
1591293617.5748	16	CdOPg52	V3t5AGGk	jyf	192.168	.99.51	52999	52.179.	219.14
443 tcp	ssl	68.28012	22	1270	3036	SF	_	_	0
ShADdaFf	14	1842	11	3488	-				
1591295064.955993		CKXOFb4bJ1gZgX3sW2			192.168	.99.51	53150	52.179.	219.14
443 tcp	ssl	128.116	421	1269	3036	RSTR	-	-	0
ShADdar 12	1761	11	3488	-					
1591295092.098734		CjkEjk4m4GL1LSMJMd			192.168	.99.51	53153	52.179.	219.14
443 tcp	ssl	113.248	030	1246	3036	SF	-		0
ShADdaFf	14	1818	11	3488					
thunt@thunt-labs:~/lab1\$									

Entry in ssl.log

thunt@thunt-labs:~/lab1\$ grep 52.179.219.14 ssl.log | head -2 1591290650.502177 Ce8vuV9pdZN1TTE21 192.168.99.51 52863 52.179.219.14 TLSv12 TLS ECDHE ECDSA WITH AES 256 GCM SHA384 x25519 array503.prod.do.dsp. 443 mp.microsoft.com F – h2 T Fd3zBI3qZR5omLoAi7,FWU71E32do A3ZMCOH (empty) CN=*.prod.do.dsp.mp.microsoft.com,OU=DSP,O=Microsoft,L=Redmond,ST=WA, CN=Microsoft ECC Content Distribution Secure Server CA 2.1,0=Microsoft Corpor C=US ation, L=Redmond, ST=Washington, C=US 1591292050.498723 CbnymM8GhENDKN6ol 192.168.99.51 52938 52.179.219.14 TLSv12 TLS ECDHE ECDSA WITH AES 256 GCM SHA384 x25519 array503.prod.do.dsp. 443 F – h2 T mp.microsoft.com Fle59121NCCmoWeZnf, FMXEB01sio EzUSPeza (empty) CN=*.prod.do.dsp.mp.microsoft.com,OU=DSP,O=Microsoft,L=Redmon CN=Microsoft ECC Content Distribution Secure Server CA 2.1, O=Microsof d,ST=WA,C=US t Corporation, L=Redmond, ST=Washington, C=US thunt@thunt-labs:~/lab1\$

x509.log info

thunt@thunt-labs:~/lab1\$ grep Fd3zBI3qZR5omLoAi7 x509.log

1591290650.543514Fd3zBI3qZR5omLoAi733300000188C1ABDC391569B5F000000000018CN=*.prod.do.dsp.mp.microsoft.com,OU=DSP,O=Microsoft,L=Redmond,ST=WA,C=USCN=Microsoft ECC Content Distribution Secure Server CA 2.1,O=Microsoft Corporation,L=Redmond,ST=Washington,C=US1574361906.00000id-ecPublicKeyecdsa-with-SHA384ecdsa256-prime256v1d.do.dsp.mp.microsoft.com---F-thunt@thunt-labs:~/lab1\$

Answers

- Longest connection appears to be business partner related
- Second longest is is used in keeping
 Windows 10 updated
- Neither appear to be malware related
- Is there a business need for this?
 - If no, hunt down app and kill it
 - If yes, whitelist to remove from future hunts

Find beacons by session size

- Use the same data files as last lab
- Identify which internal IP's are connecting to individual external IP's most frequently
- Focus on IP pairs that create thousands of connections per days
 - Beacons can have smaller quantities, but we need to start somewhere
- ▷ Is there consistency in session size?
 - Possible beacon?

Find beacons - hints

- ▷ You need to be able to clearly identify:
 - Number of unique connections over 24 hours
 - Not the number of packets
 - The amount of payload data transferred
- Pick targets Who has most connections?
- Zeek displays both bytes sent and received
 - Focus on bytes sent
 - orig_bytes

Useful commands to try

cat conn.log | zeek-cut id.orig_h id.resp_h | sort | uniq -c | sort -rn | head

cat conn.log | zeek-cut id.orig_h id.resp_h orig_bytes | grep 192.168.99.51 | grep 104.248.234.238 | sort | uniq -c | sort -rn | head

Answers - most connections

thunt@thunt:~/lab1\$ cat conn.log zeek-	-cut id.orig_h id.resp_h sort uniq -c				
sort -rn head					
3011 192.168.99.51 104.248.234.238					
336 fe80::b8d7:3773:ab6e:7fc9	ff02::1:3				
336 192.168.99.54 224.0.0.252					
332 fe80::194f:796e:70e6:a5be	ff02::1:3				
332 192.168.99.55 224.0.0.252					
330 fe80::fd16:6e8:118e:81cd	ff02::1:3				
330 192.168.99.53 224.0.0.252					
319 fe80::d048:42e0:8448:187c	ff02::1:3				
319 192.168.99.52 224.0.0.252					
297 192.168.99.51 208.67.222.222					
thunt@thunt:~/lab1\$					

The first looks potentially suspicious (no time analysis) The rest are just local multicast traffic

Session size analysis

thunt@thunt:~/lab1\$ cat conn.log | zeek-cut id.orig_h id.resp_h orig_bytes | grep
192.168.99.51 | grep 104.248.234.238 | sort | uniq -c | sort -rn | head
3011 192.168.99.51 104.248.234.238 477
thunt@thunt:~/lab1\$

Every session resulted in 477 bytes sent to external host This could indicate a beacon that was not activated over the 24 hours

Payload analysis with ngrep

- We found a suspicious IP pair
 192.168.99.51 to 104.248.234.238
- Let's analyze the payloads in these sessions
- Multiple tools can help here
 - But ngrep easily focuses on payload
- Use "host" parameter to focus in on the above IPs

Payload analysis - hints

- Ngrep is normally used to search for patterns within the payload of all packets
- ▷ You can use BP filters to:
 - Focus on specific IP addresses
 - Focus on specific ports
 - "host" focuses on specific IP addresses
- Helpful switches
 - "-q" = Don't print "#" for packets that don't match
 - "-I" (capital letter i) = Read from pcap file

Useful commands to try

ngrep -q -I tracel.pcap host 192.168.99.51 and host 104.248.234.238 | less

Things that make you go "humm"

thunt@thunt:~/lab1\$ ngrep -q -I trace1.pcap host 192.168.99.51 and host 104.248.23
4.238 | head -20
input: trace1.pcap
filter: (host 192.168.99.51 and host 104.248.234.238) and ((ip || ip6) || (vlan
&& (ip || ip6)))

T 192.168.99.51:52833 -> 104.248.234.238:80 [AP] #4
GET /rmvk30g/eghmbblnphlaefbmmnoenohhoncmcepapefjjekpleokhjfjmnmijghedkienpli
dbbcmgdjldbegpeemiboacnfcpnbnnhlmjbpcejfpecdioiddklfegefcjbcnagjclnoijpajlpkk
egakmpdddojnlphegeehaacmofggdfkagpbighfkndllaamndepdanhnogedkaodhgakiigohemin
oolnaobdiiokpebghapnghbebkepiffooljden;1;4;1 HTTP/1.1..Accept: text/html, ima
ge/gif, image/jpeg, *; q=.2, */*; q=.2..Connection: keep-alive..User-Agent: M
ozilla/4.0 (Windows 7 6.1) Java/1.7.0_11..Host: 104.248.234.238..Cache-Contro
1: no-cache....

T 104.248.234.238:80 -> 192.168.99.51:52833 [A] #5

.

T 104.248.234.238:80 -> 192.168.99.51:52833 [AP] #6
HTTP/1.1 200 OK.Date: Thu, 4 Jun 2020 16:59:22 GMT..Server: Apache/2.2.15 (C
entOS)..X-Powered-By: PHP/5.3.27..Content-Type: application/octet-stream..Con
nection: close..Content-Length: 0....

What data are we sending?

- ▷ Is this the only URI we send to this host?
- ▷ We could eyeball it, but...
- Zeek stores this type of data
 It's in the http.log file
- Let's use this log to identify all of the URI's requested from this external host

URI request - hints

- Zeek-cut is your friend
- We should extract
 - Source IP
 - Destination IP
 - The "uri" string
- ▷ Grep can focus on the traffic we care about
- Remember the threat hunter's mantra
 - sort | uniq | sort

Useful commands to try

cat http.log | zeek-cut id.orig_h id.resp_h uri | grep 104.248.234.238 | sort | uniq -c | sort -rn

Single minded request

Answers

- ▷ 3,011 connections to external host
- Always sending the same odd "GET" request
- HTTP header data looks forged
- ▷ This really looks like a C2 channel
- Google search for "rmvk30g"
 Looks like Fiesta EK malware

https://www.malware-traffic-analysis.net/2014/04/05/index.html

Look for C2 over DNS

- Move to the "lab2" directory
- Check to see if C2 over DNS is in play
- Consider any domain with more than 1,000
 FQDNs in it suspect
 - Not interested in total quantity of queries
 - Interest in quantities of unique FQDNs

C2 over DNS - hints

- Zeek has a log file just for DNS traffic
- ▷ "query" field shows what was looked up
- Need a way to count hosts within a domain
- Some helpful text manipulation tools
 - sort = Pull together matching lines
 - uniq = Remove repeat entries
 - rev = Reverse the characters on a line
 - cut = Remove a section of characters on a line

Useful commands to try

cat dns.log | zeek-cut query | sort | uniq | rev | cut -d . -f 1-2 | rev | sort | uniq -c | sort -rn | head

C2 over DNS - Zeek

```
thunt@thunt:~/lab2$ cat dns.log | zeek-cut query | sort | uniq | rev | cut -d . -f
1-2 | rev | sort | uniq -c | sort -rn | head
2074 honestimnotevil.com
    1 ne.jp
    1 in-addr.arpa
    1 -
thunt@thunt:~/lab2$
```

That first entry looks pretty odd

Answers

- We looked up 2,074 FQDNs within honestimnoteveil.com
- This extremely high for a domain we do not recognize
- Could very well indicate C2 over DNS

Query types used by C2

- Many C2 over DNS tools use TXT record types to create channel
- This is why many orgs focus on this type
 Leverage NIDs signatures
- Is that true for this C2 channel?
- Lab time!
 - Identify what record types were used

Hints - C2 over DNS record types

- Will need to extract "qtype_name" and "query" for each record
- We only care about "honestimnotevil" records
- Once these are extracted, we can "cut" out the query types and use our mantra to summarize

Useful commands to try

cat dns.log | zeek-cut qtype_name query | grep honestimnotevil | cut -f 1 | sort | uniq -c | sort -rn

A mix of query types

thunt@thunt:~/lab2\$ cat dns.log | zeek-cut qtype_name query | grep honestimnotevil | cut -f 1 | sort | uniq -c | sort -rn 707 MX 692 TXT 675 CNAME thunt@thunt:~/lab2\$

707 + 692 + 675 = 2,074 (same as number of FQDNs found in first lab)

Answers

- Three different query types were used
 Fairly even spread of quantities
- May be done to reduce the number of records for a specific type
- ▷ While TXT was used, may not be needed
- We can't just look for TXT records and hope to always catch C2

Repeat the labs with RITA

- Let's see if RITA makes this easier
- Zeek logs already imported into RITA
- Dataset names match directory names
 Lab1 & lab2
- Repeat analysis for each
- Note: RITA scores beacons, investigate 0.8 or higher scores
- > Type "rita" to get a list of commands

Hints

- List current databases
 - \circ rita list or rita show-databases
- Look for long connections
 rita show-long-connections <database name>

Look for beacons

- rita show-beacons <database name>
- Look for C2 over DNS
 - rita show-exploded-dns <database name>

Useful commands to try

rita show-databases
rita show-long-connections lab1 | head

rita show-long-connections lab1 | cut -d , -f 1,2,4 | sort | datamash -H -t , -g 1,2 sum 3 | sort -t , -k 3 -rn | head

rita show-beacons lab1 | head

rita show-exploded-dns lab1 | head

thunt@thunt:~/lab1\$ rita show-long-connections lab1 | head -5 Source IP, Destination IP, Port: Protocol: Service, Duration 192.168.99.51,167.71.97.235,9200:tcp:-,86389.7 192.168.99.51,104.248.234.238,80:tcp:http,243.769 192.168.99.51,104.118.9.117,443:tcp:ssl,166.14 192.168.99.51,72.21.91.29,80:tcp:- 80:tcp:http,134.888 thunt@thunt:~/lab1\$ thunt@thunt:~/lab1\$ rita show-beacons lab1 | head -5 Score, Source IP, Destination IP, Connections, Avg. Bytes, Intvl Range, Size Range, Top I ntvl, Top Size, Top Intvl Count, Top Size Count, Intvl Skew, Size Skew, Intvl Dispersion ,Size Dispersion 0.885,192.168.99.51,104.248.234.238,3011,1101,246,621,28,689,1019,2856,0,0,1,0 0.835,192.168.99.51,52.179.224.121,72,396,11,2,1200,183,69,69,0,0,0,0 0.586,192.168.99.51,208.67.220.220,60,245,7741,30,1,80,3,17,0.117434,-0.25,991,4 0.585,192.168.99.51,52.184.217.56,30,5258,2687,122,900,1810,1,15,-0.434783,0,305,1 thunt@thunt:~/lab1\$ thunt@thunt:~/lab1\$ rita show-exploded-dns lab1 | head -5 Domain, Unique Subdomains, Times Looked Up microsoft.com,24,226 mp.microsoft.com, 14, 117 dsp.mp.microsoft.com,9,109 prod.do.dsp.mp.microsoft.com, 8, 107 thunt@thunt:~/lab1\$

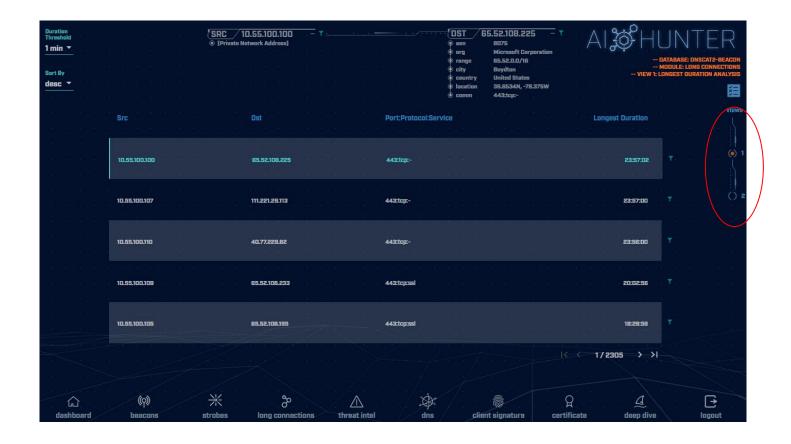
Answers - Lab2

thunt@thunt:~/lab1\$ rita show-long-connections lab2 | head -5 No results were found for lab2 thunt@thunt:~/lab1\$ rita show-beacons lab2 | head -5 No results were found for lab2 thunt@thunt:~/lab1\$ rita show-exploded-dns lab2 | head -5 Domain, Unique Subdomains, Times Looked Up honestimnotevil.com,2074,2074 8806d9a9068226a33b26e65071a0d496c751246292ec22b36bb5761c2762.5da0b7f90908be408ac43 eb80a.honestimnotevil.com,21,21 5da0b7f90908be408ac43eb80a.honestimnotevil.com,21,21 6a22df8dcd8e5032f95c2406362b70ddc5843efe182166d82ecf895312d7.60a5291b4324545e080e6 2a0ea.honestimnotevil.com,7,7 thunt@thunt:~/lab1\$

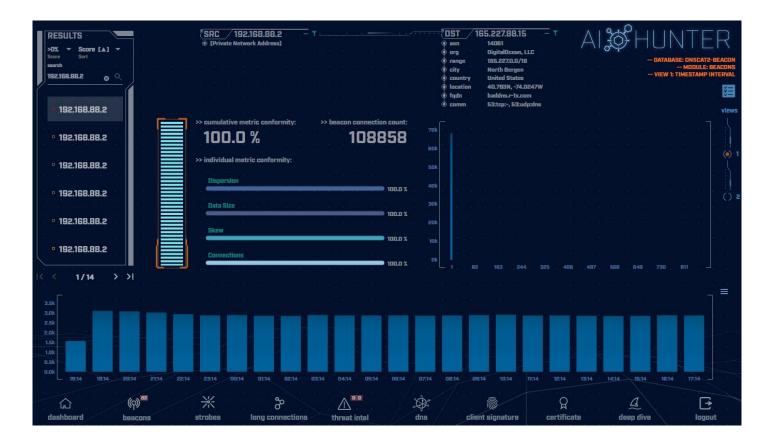
Answers - Final

- RITA provides a consistent interface for identifying C2
- Screens pull in additional helpful info
- Even very slow beacons can be detected
- Investigation can be scripted
- Open source, so anyone can use it for free

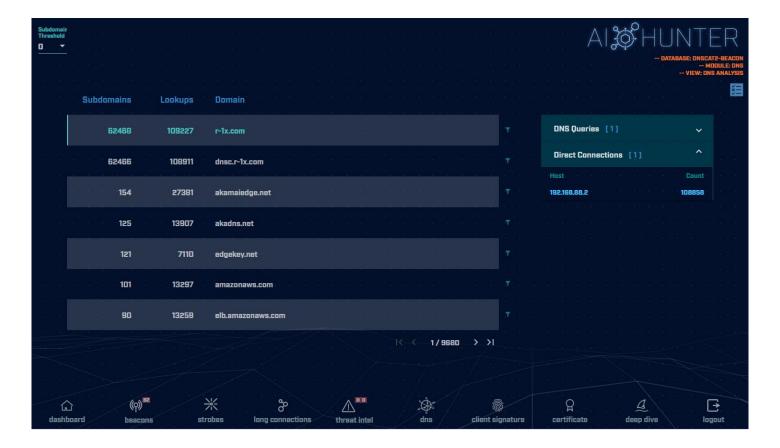
Next steps

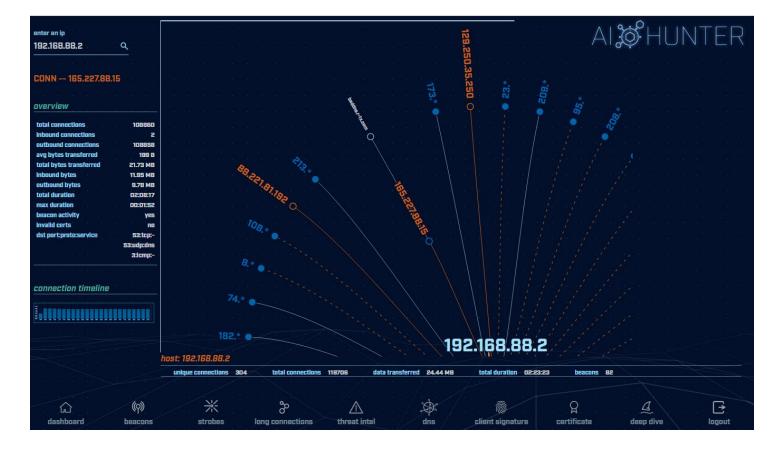

- Do we feel confident in flagging anything we have seen as requiring incident handling?
- Are there any connections that need more research?
 - What should this research be?
 - Do we need to involve any other teams?
 - If we need more data collection, for how long?

Quick demo


- Similar data, seen through Al-Hunter
- Inexpensive commercial solution
- Automates much of the hunting process

24 active hunts of 24-hours of data every single day Top results scored, alerts sent to SIEM


Long connections with lots of intel View both individual and cumulative


Clear beacon analysis By both timing and session size

Resources to dig deeper

	Ľ	IST.	/ 16		27.88.1	ອ	deep dive
	φ	asn		140	361		AbuseIPDB
	Φ	org		Dig	italOcea	n; LLC	
	φ	range		165	<u>5.227.0.0</u>	/16	AlienVault
	φ	city		No	rth Berg	en)	apility.io
	•	country		Uni	ited Stat	es	ThreatCrowd
	•	location		40	.793N, -7	4.024	
	•	fqdn		bac	ddns.r-1x	.com	Shodan
	٢	comm		53	tcp:-, 53	:udp:c	Google
							Google DNS
/Bk							VirusTotal
							SecurityTrails
Ok							

C2 over DNS analysis

Deep dive analysis

Take home lab

- This is a bonus lab to do on your own
 - Wait at least a week
 - Will help identify what training "stuck"
 - Answers are provided at the end
- Move to the "lab3" directory
- Check for long connections and beacons
- Investigate any suspect external IP's
- Do you see anything of concern?
- Hints and answers after "Wrap Up" slide

Other courses I'm teaching

Advanced Network Threat Hunting
 3/22 - 3/25 (4 hours per day)
 \$495

https://www.antisyphontraining.com/advanced-network-threat-hunting-w-chris-brenton/

Getting Started with Packet Decoding
 2/15 - 2/18 (4 hours per day)
 Pay what you want, \$25+

https://www.antisyphontraining.com/event/getting-started-with-packet-decoding-w-chris-brenton/

Wrap Up

- > Thanks for attending!
- Very special thank you to the folks behind the scenes
 - They give up their free time to help us all out
- Content feedback?
 - Please email: chris@activecountermeasures.com

Take home lab

- Move to the "lab3" directory
- Check for long connections and beacons
- Investigate any suspect external IP's
- Do you see anything of concern?

Hints for the take home lab

- Repeat what we did with "lab1"
 - \circ Look for long connections
 - Look for cumulative communication time
 - Look for beacons
 - You can choose to jump right into RITA
- Us "up arrow" key to scroll through previous commands to find what you used earlier
- ▷ You've got this! :-)

Useful commands to try (1 of 2) cat conn.log | zeek-cut id.orig_h id.resp_h duration | sort -k 3 -rn | head

cat conn.log | zeek-cut id.orig_h id.resp_h
duration | sort | grep -v -e '^\$' | grep -v '-'
| datamash -g 1,2 sum 3 | sort -k 3 -rn | head

cat conn.log | zeek-cut id.orig_h id.resp_h |
sort | uniq -c | sort -rn | head

host <IP address to investigate>

Useful commands to try (2/2)

rita show-databases rita show-long-connections lab3 | head

rita show-long-connections lab3 | cut -d , -f 1,2,4 | sort | datamash -H -t , -g 1,2 sum 3 | sort -t , -k 3 -rn | head

rita show-beacons lab1 | head

rita show-exploded-dns lab1 | head

Answers - Long connections

thunt@thunt:~/lab3	cat conn.log z	eek-cut id.orig	h id.resp h duration	sort -k
		<u> </u>		

86387.734233

86347.153666

9868.617938

6735.118200

129.924272

129.754188

129.130822

129.123714

129.057349

128.896376

3 -rn | head 192.168.99.52 167.71.97.235 192.168.99.52 162.250.5.77 192.168.99.52 52.117.209.74 192.168.99.52 162.250.2.168 192.168.99.52 52.184.217.56 192.168.99.52 52.184.212.181 192.168.99.52 52.184.213.21 192.168.99.52 52.184.212.181 192.168.99.52 52.167.17.97 192.168.99.52 52.167.17.97 thunt@thunt:~/lab3\$

162

Answers - Cumulative comm time

thunt@thunt:~/la	ab3\$ cat conn.log	g zeek-cut id.orig h id.resp h duration sort
grep -v -e '^\$'	grep -v '-'	datamash -g 1,2 sum 3 sort -k 3 -rn head
192.168.99.52	167.71.97.235	86387.734233
192.168.99.52	162.250.5.77	86347.153666
192.168.99.52	52.117.209.74	9868.617938
192.168.99.52	52.184.217.56	7065.516309
192.168.99.52	52.184.213.21	7056.53546
192.168.99.52	162.250.2.168	6735.1182
192.168.99.52	52.184.212.181	6646.856637
192.168.99.52	239.255.255.250	2294.038962
fe80::d048:42e0:	8448:187c	ff02::c 2281.05815
fe80::2126:bcd7	16f4:8cdb	ff02::c 2242.310744
thunt@thunt:~/la	ab3\$	

Same two top IPs

Answers - Beacons

thunt@thunt:~/lab3\$ cat conn.log | zeek-cut id.orig_h id.resp_h | sort | uniq -c | sort -rn | head 339 192 168 99 52 224 0 0 251

222	192.100.99.JZ ZZ	24.0.0.201	
319	192.168.99.52 20	08.67.222.222	
288	fe80::fd16:6e8:118	8e:81cd	ff02::fk
288	fe80::fd16:6e8:118	8e:81cd	ff02::16
288	fe80::d048:42e0:84	448 : 187c	ff02::fk
288	fe80::d048:42e0:84	448 : 187c	ff02::16
288	fe80::b8d7:3773:ab	o6e:7fc9	ff02::fk
288	fe80::b8d7:3773:ab	o6e:7fc9	ff02::16
288	fe80::5d7e:4fb3:8f	fbc:d59	ff02::fk
288	fe80::5d7e:4fb3:81	fbc:d59	ff02::16
unt@t1	nunt:~/lab3\$		

Nothing of note

thunt@thunt:~/lab1\$ rita show-long-connections lab3 | head -5 Source IP, Destination IP, Port: Protocol: Service, Duration 192.168.99.52,167.71.97.235,9200:tcp:-,86387.7 192.168.99.52,162.250.5.77,5938:tcp:-,86347.2 192.168.99.52,52.117.209.74,5938:tcp:-,9868.62 192.168.99.52,162.250.2.168,5938:tcp:-,6735.12 thunt@thunt:~/lab1\$ rita show-beacons lab3 | head -5 Score, Source IP, Destination IP, Connections, Avg. Bytes, Intvl Range, Size Range, Top I ntvl, Top Size, Top Intvl Count, Top Size Count, Intvl Skew, Size Skew, Intvl Dispersion ,Size Dispersion 0.835,192.168.99.52,52.230.222.68,59,546,31350,2696,840,181,46,48,0,0,0,0 0.834,192.168.99.52,52.242.211.89,21,826,1651,2696,1680,181,14,11,0,0,0,0 0.833,192.168.99.52,104.71.255.238,24,5429,21721,40,1800,505,16,22,0,0,0,0 0.658,192.168.99.52,52.184.213.21,65,5392,2199,120,900,1883,28,33,0.99757,0,1,0 thunt@thunt:~/lab1\$ rita show-exploded-dns lab3 | head -5 Domain, Unique Subdomains, Times Looked Up microsoft.com, 10, 237 teamviewer.com, 6, 36 mp.microsoft.com, 5, 111 8.e.f.ip6.arpa,4,20 thunt@thunt:~/lab1\$

Answers - Investigate IPs

thunt@thunt:~/lab3\$ host 167.71.97.235
235.97.71.167.in-addr.arpa domain name pointer demo1.aihhosted.com.
thunt@thunt:~/lab3\$ host 162.250.5.77
77.5.250.162.in-addr.arpa domain name pointer US-NJC-ANX-R010.teamviewer.com.
thunt@thunt:~/lab3\$ __

Business need?

Answers - Final

- Two long connections found
- Unlikely (but not impossible) we have any beacons
- ▷ For the two long connections
 - First was discussed earlier (business partner)
 - The second is TeamViewer
- Is there a business need to run TeamViewer on this system?