Network Threat Hunter Training

Level 1
Thanks to our sponsors!

ACTIVE | COUNTERMEASURES

BLACK HILLS Information Security

WILD WEST HACKIN' FEST
Other courses I'm teaching

▷ Advanced Network Threat Hunting
 ○ 6/7 - 6/10 (4 hours per day)
 ○ $495

https://www.antisyphontraining.com/advanced-network-threat-hunting-w-chris-brenton/

▷ Getting Started with Packet Decoding
 ○ No live class currently scheduled
 ○ On-Demand - $200 for 1 year access

Before we get started

▷ You'll need the class VM to do the labs
▷ Or run the install script
▷ Or deploy on DigitalOcean
▷ Login info:
 ○ Name: thunt
 ○ Pass: aybab2u
▷ This should have been done before class :-)
▷ Slides are available on Discord
Logistics

▷ 10 minute break at top of each hour
▷ 20 minute break at 3 hour point
▷ Use the Discord channel for discussion
 ○ #acm-webcast-chat channel
▷ The team is monitoring for your questions
In this webcast

▷ I'm going to question some industry accepted standard practices
 ○ Because what we are doing is broken
 ○ And it's not getting any better
 ○ Will diverge from the norm
▷ Please keep an open mind
▷ Prime cognitive bias fodder
Modern attackers

- The vision of a lone hacker in the basement is dangerously outdated
- It's about profit, not mass infection
 - Attacks are now well funded
- Attacks are now targeted which means:
 - They do their homework on your environment
 - Malware is customized for your campaign
 - Attack infrastructure is customized as well
- Attackers innovate for each new target
How we (try to) catch the bad guys

▷ Centralized log collection
▷ Write "signatures" to identify patterns that may indicate an attack
 ○ Patterns in the log messages
 ○ Matches against intel feeds
▷ Alert on signature matches
▷ Follow up on alerts
Limitations of system logging

▷ **Syslog was not designed for security**
 ○ Facility 13 is "security/log audit"
 ○ But rarely used in a general security context
 ○ More appropriate as a severity level
 ○ But there is no "security" severity level

▷ **No standard for message context**
 ○ Different platforms log events differently
 ○ Different applications log events differently

▷ **Decoder ring not included**
Limitations of deployment

▷ Every device and system?
▷ Are you sure?
▷ Are you REALLY sure?
 ○ I have yet to see an environment that can accurately make this claim
 ○ Even when you log, adversaries can disable this
▷ "Fail open" system
 ○ Can access Internet without logging and no alert
 ○ Can you detect disabled logging?
What are signatures?

- Basically RegEx for logs
- Match known bad patterns
- Because adversaries have stopped innovating and we now know all of the possible bad patterns they can use
- Oh wait...
- Sigs are also the 1990's anti-virus model
Lack of innovation

- Log RegEx matching is old
 - Older than IDS
 - Older than firewalls
- First SANS logging course early 2000's
- Not much has changed

OK to still wear parachute pants?
Is there data showing it's broken?

▷ Persistent versus ransomware actors
 ○ Detect time shouldn't count on actor disclosure

▷ Dwell time for persistent is on the rise

 https://www.crowdstrike.com/blog/2019-services-report-key-findings-part-1/

▷ Dwell time ranges from 40 - 900 days

▷ We are getting worse at self detection

So is log review threat hunting?

▷ Just to review
 ○ Protocol can't describe security events
 ○ It's a fail open system
 ○ We try to pattern match on old attack patterns
 ○ False positive rates are extremely high
 ○ It's old technology

▷ The data says otherwise

▷ This process is clearly broken

▷ We need to assess new ideas and improve
I'm good, I use threat intel feeds

- Match on IP because someone said it's bad
- Also based on 1990's AV technology
- Is the data really actionable?
 - Adversaries frequently change IPs and DNS
 - Tend to use shared IP space
 - The accuracy is dependent on the reporter
- A threat intel match does not mean you've prevented an attack
Can I threat hunt with my NIDS?

But empire and dnscat2 were missed
What Threat Hunting should be

▷ A proactive validation of all systems connected to the organization's network
▷ Needs to include all systems
 ○ Desktops, laptops, cellphones, tablets
 ○ Servers, network gear, printers
 ○ IoT, IIoT, any type of Internet "Thing"
▷ Execute without making assumptions
▷ Deliverable is a compromise assessment
The Purpose of Threat Hunting

Protection
- Firewalls
- Intrusion Detection
- VPNs
- Proxies
- Anti-Virus
- 2-Factor Authentication
- Pentesting
- Auditing

Dwell time is 6+ months for persistent connections

Response
- Incident Handling
- Log Review
- Forensics
- Public Relations
- Cyber Insurance

Threat Hunting should reduce the gap between protection failure and response as much as possible!
What threat hunting is not

▷ Managing SOC alerts
▷ Check logs for suspect activity
▷ Check dashboards for unusual activity
▷ Monitor and respond to EDR alerts
▷ These are all reactive activities
▷ Threat hunting is a proactive process
The process of threat hunting

▷ Review the integrity of every device
 ○ Desktops, servers, network gear, IoT, IIoT, etc.

▷ Generate one of 3 dispositions
 ○ I'm pretty certain the system is safe
 ○ I'm pretty certain the system is compromised
 ○ I'm unsure of state so will collect additional info to derive one of the above two results

▷ Leverage context for host log review
Proposal - Start with the network

- The network is the great equalizer
 - You see everything, regardless of platform
 - High level assessment of the terrain
- You can hide processes but not packets
- Malware is usually controlled
 - Which makes targeting C2 extremely effective
 - Identify compromise when C2 "calls home"
 - Must be frequent enough to be useful
- Wide view so you can target from there
Start on the network

CobaltStrike
THEN pivot to the system logs
Don't cross "the passive/active line"

▷ All threat hunting activity should be undetectable to an adversary
▷ Passive in nature
 ○ Review packets
 ○ Review SIEM logs
▷ If active techniques are required, we must trigger incident response first
 ○ Example: Isolating the suspect host
 ○ Example: Running commands on suspect host
C2 Detection Techniques
Where to Start

▷ Traffic to and from the Internet
 ○ Monitor internal interface of firewall
▷ Packet captures or Zeek data
▷ Analyze in large time blocks
 ○ More data = better fidelity
 ○ Minimum of 12 hours, 24 is ideal
▷ Analyze communications in pairs
 ○ Every outbound session passing the firewall
 ○ Ignore internal to internal (high false positive)
Threat score system

▷ Our job is to disposition IPs
▷ How do you know when to make a choice?
▷ A numeric system can help guide you
 ○ Score of 0 = system is safe
 ○ Score of 100 = system is compromised
▷ Score modifiers
 ○ Major - A clue that strongly indicates integrity state
 ○ Minor - A clue that peripherally indicates integrity state
Score examples

▷ Major score modifier
 ○ Persistency of connection
 ○ Moving lots of data to a threat intel IP address
 ○ DNS pointed to an expected business partner
 ○ DNS and cert match business partner system

▷ Minor modifier
 ○ Moving lots of data to a random IP
 ○ Unique client signature
 ○ self signed digital certificate
Threat hunting process order

▷ Connection persistency
▷ Business need for connection?
▷ Abnormal protocol behaviour
▷ Reputation check of external IP
▷ Investigation of internal IP
▷ Disposition
 ○ No threat detected = add to safelist
 ○ Compromised = Trigger incident handling
Does targeting C2 have blind spots?

▷ Attackers motivated by gain
 ○ Information
 ○ Control of resources

▷ Sometimes "gain" does not require C2
 ○ Just looking to destroy the target
 ○ Equivalent to dropping a cyber bomb
 ○ We are talking nation state at this level

▷ NotPetya
 ○ Worm with no C2 designed to seek and destroy
Techniques Vs Methodology

▷ We are going to deep dive on finding C2
▷ It's important to understand what needs to happen "under the hood"
▷ Some of these techniques don't scale
 ○ Manually breaking out connection pairs
 ○ But that's OK
▷ Will focus on tools in a later module
▷ For now, focus on just the techniques
Bad guys Vs. Red Teams

- Bad guys = C2 is part of a business model
- Red team = C2 is why they get paid
- Much harder to detect red team C2 than the real bad guys
 - In the wild, most evil C2 beacons $\leq 1/\text{minute}$
 - Red team on long term contract $\leq 1/\text{week}$
- Focus will be on the bad guys
Long connections

▷ You are looking for:
 ▷ Total time for each connection
 ○ Which ones have gone on the longest?
 ▷ Cumulative time for all pair connections
 ○ Total amount of time the pair has been in contact
 ▷ Can be useful to ignore ports or protocols
 ○ C2 can change channels
Long connection examples

24 Hours

SYN FIN SYN FIN SYN FIN SYN FIN SYN FIN
Connection timing from Zeek

cbrenton@zeek-3-3-rc2:/opt/bro/logs/2019-07-17$ zcat conn.00\:00\:00-01\:00\:00.log.gz | head -10
#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path conn
#open 2019-07-17-00-00-00
#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p proto src vice duration orig_bytes resp_bytes conn_state local_orig local_resp missed_bytes history orig_pkts orig_ip_bytes resp_pkts resp_ip_bytes tunnel_pare nts
#types time string addr port addr port enum string string interval count count count set[string]
1563321592.266216 CRIP5W73KxGUytn2XQh 185.176.27.30 48086 104.248.191.205 20391 tcp - 0.265051 0 0 REJ F F 0 SrR 2 80 1
40 (empty)
1563321592.266218 CjZ8aQ2A0HDrsheUAd 185.176.27.30 48086 104.248.191.205 20391 tcp - 0.265051 0 0 REJ F F 0 SrR 2 80 1
40 (empty)
cbrenton@zeek-3-3-rc2:/opt/bro/logs/2019-07-17$
```
#separator \x09
#set_separator   ,
#empty_field     (empty)
#unset_field     -
#path            conn
#open            2021-10-13-15-47-50
#fields          ts     uid     id.orig_h     id.orig_p
#types           time   string  addr     port
1599652681.658987 C109jy2pQa8n4Nhpnk  192.168.125.105  43742    91.189.88.142
1599652681.909864 C7ebxg76JCVTenVC4  192.168.125.105  55418    91.189.91.38
1599652682.160692 Ciy54Bgp1AAP3g3Ai  192.168.125.105  56374    91.189.88.152
1599652682.411596 CIJ8xh4WAfju0gEub6  192.168.125.105  36338    91.189.91.39
1599652681.643945 CfGhY0bXYVn9DET8  127.0.0.1    33915    127.0.0.53
1599652681.644119 CECY5P1CDlnAxjVHG7  192.168.125.105  53240    8.8.8.8
1599652681.651291 CiKUI24evOEENjqzg5  127.0.0.1    58816    127.0.0.53
1599652681.651392 CEY8xNH9QzkxBCGv1  192.168.125.105  38521    8.8.8.8
1599652681.651543 CZs8CT12RnoYQ0gn0dg  192.168.125.105  55633    8.8.8.8
```
Longest duration with Zeek

```bash
thunt@thunt-labs:~/lab1$ cat conn.log | zeek-cut id.orig_h id.resp_h duration | sort -k 3 -rn | head

192.168.99.51  167.71.97.235  86389.659357
192.168.99.51  104.248.234.238  243.768999
192.168.99.51  104.118.9.117  166.139547
192.168.99.51   72.21.91.29  134.888177
192.168.99.51  52.184.216.246  129.075227
192.168.99.51  52.167.249.196  128.957107
192.168.99.51  52.184.216.246  128.481757
192.168.99.51  13.107.5.88  128.346889
192.168.99.51  52.179.219.14  128.116421
192.168.99.51  13.107.5.88  128.042647
```

thunt@thunt-labs:~/lab1$
Cumulative talk time with Zeek

```
thunt@thunt-labs:~/lab1$ cat conn.log | zeek-cut id.orig_h id.resp_h duration | sort | grep -v -e '^$' | grep -v '-' | datamash -g 1,2 sum 3 | sort -k 3 -rn | head
192.168.99.51 167.71.97.235 86389.659357
192.168.99.51 52.179.219.14 4067.394413
192.168.99.51 52.184.217.56 2936.172839
192.168.99.51 52.184.216.246 2825.858
192.168.99.51 239.255.255.250 2507.626732
fe80::d048:42e0:8448:187c ff02::c 2434.977049
192.168.99.51 239.255.255.250 2374.546469
fe80::2126:bc37:16f4:8c6c ff02::c 2368.234679
192.168.99.51 13.107.5.88 1317.047871
192.168.99.51 52.167.249.196 868.46966
```
What about firewalls?

- Surprisingly hard to get this info
- "Timing" tends to be TTL, not duration
- BSD
 - `pftop` - output connection age in seconds
- Junos
 - `show security flow session extensive node all`
 - `Duration in seconds`
What is a beacon?

▷ Repetitive connection establishment between two IP addresses
 ○ Easiest to detect

▷ Repetitive connection establishment between internal IP and FQDN
 ○ Beacon broken up over multiple IP's
 ■ Usually a CDN provider
 ○ Target IPs also destination for legitimate traffic
 ○ Far more difficult to detect
Tell my minion to steal all local documents!

Have anything for me to do?
<wait 600 seconds>
Have anything for me to do?
<repeat>

Regular C2
C2 over DNS

Tell my minion to steal all local documents!

What's the TXT record for 202020202020202020202020203133830.evil.com

Have anything for me to do? <wait 600 seconds>
Tell my minion to steal all local documents!

foo.evil.com resolves to multiple IP's

Have anything for me to do? <wait 600 seconds>

C2 through CDN
Beacon detection based on timing

▷ May follow an exact time interval
 ○ Technique is less common today
 ○ Detectable by k-means
 ○ Potential false positives

▷ May introduce "jitter"
 ○ Vary connection sleep delta
 ○ Avoids k-means detection
 ○ False positives are extremely rare

▷ Short enough delta for terminal activities
Connection quantity VS time

Each bar represents the number of times the source connected to the destination during that one hour time block.
Connect time deltas with no jitter

How often a specific time delta was observed
Connection time deltas with jitter

Cobalt Strike will typically produce a bell curve
Detection based on session size

▷ Focuses on detection of the heartbeat
▷ Variations from the heartbeat indicate activation of C2 channel
▷ Session size can help reveal info regarding commands being issued
▷ Possible to randomly pad but this is extremely rare
Session size analysis

Heartbeat

Activation
Detecting beacons with jitter

▷ Easier to detect when normalized out over long periods of time
 ○ Average the time deltas for each hour
 ○ Plot over 24 hours

▷ Should make a beacon even more suspect
 ○ False positives don't obscure their beacon timing
 ○ High probability of being evil
Is there a business need?
Can I get false positives?

- Sort of...
- Checking for connection persistency
- Then checking for business need
- It's possible to have persistent connections with a legit business need
 - NTP
 - Windows Notification Services
 - Checking for patches
C2 Detection Techniques
Part 2
Minor modifiers for review

▷ Protocol compliance
▷ External IP address
▷ Internal IP address
Unexpected app or port usage

▷ There should be a business need for all outbound protocols
▷ Research non-standard or unknown ports
 ○ TCP/5222 (Chrome remote desktop)
 ○ TCP/5800 & 590X (VNC)
 ○ TCP/502 (Modbus)
Unknown app on standard port

▷ C2 wants to tunnel out of environment
 ○ Pick a port likely to be permitted outbound
 ○ Does not always worry about protocol compliance

▷ Check standard ports for unexpected apps
 ○ Indication of tunneling

▷ Different than app on non-standard port
 ○ This is sometimes done as "a feature"
 ○ Example: SSH listening on TCP/2222
Zeek decodes many apps

▷ Detect over 50 applications
 ○ HTTP, DNS, SIP, MYSQL, RDP, NTLM, etc. etc.
▷ Fairly easy to add new ones
 ○ Example: HL7 if you are in healthcare
▷ Checks all analyzers for each port
▷ Does not assume WKP = application
```
Zeek example

thunt@thunt-labs:~/lab1$ cat conn.log | zeek-cut id.orig_h id.resp_h id.resp_p
proto service orig_ip_bytes resp_ip_bytes | column -t | head
192.168.99.51 104.248.234.238 80 tcp http 689 403
192.168.99.51 23.223.200.136 80 tcp - 80 40
192.168.99.51 104.248.234.238 80 tcp http 729 443
192.168.99.52 224.0.0.251 5353 udp dns 344 0
fe80::d048:42e0:8448:187c ff02::1f 5353 udp dns 424 0
fe80::d048:42e0:8448:187c ff02::1:3 5355 udp dns 81 0
192.168.99.52 224.0.0.252 5355 udp dns 61 0
fe80::d048:42e0:8448:187c ff02::1:3 5355 udp dns 81 0
192.168.99.52 224.0.0.252 5355 udp dns 61 0
192.168.99.51 104.248.234.238 80 tcp http 689 403
```
Unexpected protocol use

▷ Attackers may bend but not break rules
▷ This can result in:
 ○ Full protocol compliance
 ○ Abnormal behaviour
▷ Need to understand "normal"
 ○ For the protocol
 ○ For your environment
Example: Too many FQDNs

▷ How many FQDNs do domains expose?
 ○ Most is < 10
 ○ Recognizable Internet based vendors 200 - 600
 ■ Microsoft
 ■ Akamai
 ■ Google
 ■ Amazon

▷ Greater than 1,000 is suspicious
▷ Could be an indication of C2 traffic
Detecting C2 over DNS

▷ Capture all DNS traffic
 ○ Capture tool of your choice
 ○ Longer the capture time, the better
▷ Filter so it's DNS traffic only
▷ Extract to text so we can sort and count
▷ Review total FQDNs per domain
Counting FQDNs per domain

cbrenton@cbrenton-lab-testing:~/lab-thunt$ tshark -r thunt-lab.pcapng -T fields -e dns.qry.name | sort | uniq | rev | cut -d ' ' -f 1-2 | rev | sort | uniq -c | sort -rn | head -10
62468 r-lx.com
 154 akamaiedge.net
 125 akadns.net
 121 edgekey.net
 104 amazonaws.com
 67 microsoft.com
 51 dynect.net
 45 parsely.com
 44 akam.net
 43 cloudfront.net
cbrenton@cbrenton-lab-testing:~/lab-thunt$
Breaking it down

Show all instances of unique FQDNs queried

Reverse the characters on the line so we can "cut" first two fields

Cut out subdomains and reverse characters on the line. We can now count the number of unique FQDNs queried per domain
Bonus checks on DNS

➢ Check domains with a lot of FQDNs
➢ Get a list of the IPs returned
➢ Compare against traffic patterns
 ○ Are internal hosts visiting this domain?
 ○ Is it just your name servers?
➢ Unique trait of C2 over DNS
 ○ Lots or FQDN queries
 ○ But no one ever connects to these systems
Normal DNS query pattern

<table>
<thead>
<tr>
<th>Subdomains</th>
<th>Lookups</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>62468</td>
<td>109227</td>
<td>r-1x.com</td>
</tr>
<tr>
<td>62468</td>
<td>108911</td>
<td>dnsc.r-1x.com</td>
</tr>
<tr>
<td>154</td>
<td>27381</td>
<td>akamaiedge.net</td>
</tr>
<tr>
<td>125</td>
<td>13807</td>
<td>akadns.net</td>
</tr>
<tr>
<td>121</td>
<td>7110</td>
<td>edgekey.net</td>
</tr>
<tr>
<td>101</td>
<td>13207</td>
<td>amazonaws.com</td>
</tr>
<tr>
<td>90</td>
<td>13259</td>
<td>elb.amazonaws.com</td>
</tr>
</tbody>
</table>

DNS Queries

Direct Connections
Things that make you go "hummm"
Look for odd HTTP user agents

10.0.2.15 identifies itself as:

Windows 10 when speaking to 27 IP’s on the Internet
Windows XP when speaking to one IP on the Internet
Unique SSL Client Hello: Zeek + JA3

<table>
<thead>
<tr>
<th>SSL/TLS Hash</th>
<th>Seen</th>
<th>Requests</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>5e573c9c9f8ba720ef9b18e9fca2e2f7</td>
<td>1</td>
<td>clientservices.googleapis.com</td>
<td>10.55.182.100</td>
</tr>
<tr>
<td>bc6c386f480ea87bb9d9e52d47eb772d8</td>
<td>2</td>
<td>clients4.google.com, 558-amw-319.mktresp.com</td>
<td>10.55.182.100</td>
</tr>
<tr>
<td>f3405aa9ca587089a55cf8c8e2754da84</td>
<td>2</td>
<td>builds.cdn.go.com</td>
<td>10.55.182.100</td>
</tr>
<tr>
<td>28a2c8bd19a11de089af65a160da28e4</td>
<td>2</td>
<td>mediaredirect.microsoft.com</td>
<td>10.55.100.105, 10.55.182.100</td>
</tr>
<tr>
<td>08bf94d7f3200a537b5a3b76b08a02a2</td>
<td>4</td>
<td>files01.netgate.com</td>
<td>192.168.88.2</td>
</tr>
</tbody>
</table>
Check destination IP address

▷ Start simple
 ○ Who manages ASN?
 ○ Geolocation info?
 ○ IP delegation
 ○ PTR records

▷ Do you recognize the target organization?
 ○ Business partner or field office
 ○ Current vendor (active status)

▷ Other internal IP's connecting?
Check threat intel on target IP

- Need to understand:
 - When was the record first created?
 - Why was the record created?

https://www.abuseipdb.com/check/<ip address>
https://dnslytics.com/ip/<IP address>
https://transparencyreport.google.com/safe-browsing/search?url=<IP, FQDN or URL>
Internal system

- Info available varies greatly between orgs
- Inventory management systems
- Security tools like Carbon Black
- OS projects like BeaKer
- Internal security scans
- DHCP logs
- Login events
- Passive fingerprinting
Leverage internal host logging

▷ Network shows suspicious traffic patterns
▷ Use this data to pivot to host logs
▷ Filter your logs based on:
 ○ Suspect internal host
 ○ Timeframe being analyzed
▷ Anything stand out as unique or odd?
Sysmon Event ID Type 3's

Map outbound connections to the applications that created them.
Sysmon Type 3 + BeaKer
But I have no system logs!

▷ Might be a good time to start collecting them
▷ Full packet captures from system
▷ Apply additional network tools to collect more data
What next?

▷ Assign points to connection persistence
 ○ How certain are you that it's automated?
▷ Assign points to the protocol review
▷ Assign points to the endpoint research
▷ Remember negative points are OK
▷ Add the score, how certain are you?
 ○ Safe = add to whitelist
 ○ Scary = Trigger incident response
 ○ Still unsure = Collect more data
C2 Detection Tools
tcpdump

▷ What's it good for?
 ○ Lightweight packet capturing tool
 ○ Cross platform support (windump on Windows)

▷ When to use it
 ○ Audit trail of all traffic
 ○ Can also filter to see only specific traffic
 ○ Can be fully automated

▷ Where to get it

https://www.tcpdump.org/
Tcpdump example

▷ Debian/Ubuntu
 ○ Place the following in /etc/rc.local

▷ Red Hat/CentOS, Fedora
 ○ Place the following in /etc/rc.d/rc.local

▷ Grabs all traffic and rotates every 60 min
 ○ Date/time stamped and compressed

#Place _above_ any "exit" line
mkdir -p /opt/pcaps
screen -S capture -t capture -d -m bash -c "tcpdump -i eth0 -G 3600 -w '/opt/pcaps/`hostname -s`.%Y%m%d%H%M%S.pcap' -z bzip2"
tshark

▷ What's it good for?
 ○ Extracting interesting fields from packet captures
 ○ Multiple passes to focus on different attributes
 ○ Combine with text manipulation tools
 ○ Can be automated

▷ When to use it
 ○ Both major and minor attributes

▷ Where to get it

https://www.wireshark.org/
Tshark example - DNS queries

$ tshark -r thunt-lab.pcapng -T fields -e dns.qry.name udp.port==53 | head -10

6dde0175375169c68f.dnsc.r-1x.com
6dde0175375169c68f.dnsc.r-1x.com
0b320175375169c68f.dnsc.r-1x.com
0b320175375169c68f.dnsc.r-1x.com
344b0175375169c68f.dnsc.r-1x.com
344b0175375169c68f.dnsc.r-1x.com
0f370175375169c68f.dnsc.r-1x.com
0f370175375169c68f.dnsc.r-1x.com
251e0175375169c68f.dnsc.r-1x.com
251e0175375169c68f.dnsc.r-1x.com
$ tshark -r sample.pcap -T fields -e http.user_agent tcp.
dstport==80 | sort | uniq -c | sort -n | head -10

 2 Microsoft Office/16.0
 2 Valve/Steam HTTP Client 1.0 (client;windows;10;1551832902)
 3 Valve/Steam HTTP Client 1.0
11 Microsoft BITS/7.5
11 Windows-Update-Agent
12 Microsoft-CryptoAPI/6.1
104 PCU
Wireshark

▷ What's it good for?
 ○ Packet analysis with guardrails
 ○ Stream level summaries

▷ When to use it
 ○ As part of a manual analysis
 ○ When steps cannot be automated

▷ Where to get it

https://www.wireshark.org/
Useful when I have a target
Bro/Zeek

▷ Old name = Bro New name = Zeek
▷ What's it good for?
 ○ Near real time analysis
 ○ More storage friendly than pcaps
▷ When to use it
 ○ When you need to scale
 ○ When you know what attributes to review
▷ Where to get it
 https://www.zeek.org/
 sudo apt -y install zeek
Zeek example - cert check

$ cat ssl* | zeek-cut id.orig_h id.resp_h id.resp_p validation_status | grep 'self signed' | sort | uniq
122.228.10.51 192.168.88.2 9943 self signed certificate in certificate chain
24.111.1.134 192.168.88.2 9943 self signed certificate in certificate chain
71.6.167.142 192.168.88.2 9943 self signed certificate in certificate chain
-d for human readable times

▷ Zeek-cut prints epoch time by default
▷ "-d" converts to human readable
ngrep

▷ Pattern match on passing packets
▷ Like "grep" for network traffic
▷ Useful for quick checks
 ○ NIDS with signature better choice for long term
▷ Useful switches
 ○ "-q" = Don't print "#" for non-matches
 ○ "-I" = Read a pcap file

https://github.com/jpr5/ngrep
sudo apt install ngrep
Ngrep example

```
cbreton@cbreton-lab-testing:~/pcaps$ ngrep -q -I odd.pcap Admin | head -15
input: odd.pcap
match: Admin

148.78.247.10:26922 -> 12.33.247.4:80 [AP]
GET /cfnfe/Administrator/startstop.html HTTP/1.0..Host: 12.33.247.4..User-Agent: Mozilla/5.0 [en] (Win
95; U)..Referer: http://12.33.247.4/..X-Forwarded-For: 148.64.147.168..Cache-Control: max-stale=0..Pre
ct: no-cache......

12.33.247.4:80 -> 148.78.247.10:26922 [AP]
HTTP/1.1 404 Not Found..Date: Tue, 25 Jun 2002 00:34:58 GMT..Server: Apache..Connection: close..Conten
t-Type: text/html; charset=iso-8859-1....<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">,<HTML><HEAD>
<TITLE>404 Not Found</TITLE>..</HEAD><BODY><H1>Not Found</H1>.The requested URL /cfnfe/Administrato
r/startstop.html was not found on this server.<P>..</BODY></HTML>....
```

```
cbreton@cbreton-lab-testing:~/pcaps$ _
```
Datamash

▷ What's it good for?
 ○ Similar to the R-base tools, but more extensive
 ○ Performing simple calculation on data

▷ When to use it
 ○ Performing calculations on multiple lines
 ○ Statistical analysis

▷ Where to get it

https://www.gnu.org/software/datamash/
sudo apt install datamash
Datamash example

cbrenton@cbrenton-lab-testing:~/lab3$ cat conn.log | zeek-cut
id.orig_h id.resp_h duration | sort -k3 -rn | head -5
192.168.1.105 143.166.11.10 328.754946
192.168.1.104 63.245.221.11 41.884228
192.168.1.104 63.245.221.11 31.428539
192.168.1.105 143.166.11.10 27.606923
192.168.1.102 192.168.1.1 4.190865

cbrenton@cbrenton-lab-testing:~/lab3$ cat conn.log | zeek-cut
id.orig_h id.resp_h duration | grep -v -e '^$' | grep -v '-' | sort | datamash -g 1,2 sum 3| sort -k3 -rn | head -5
192.168.1.105 143.166.11.10 356.361869
192.168.1.104 63.245.221.11 73.312767
192.168.1.102 192.168.1.1 5.464553
192.168.1.103 192.168.1.1 4.956918
192.168.1.105 192.168.1.1 1.99374

Duplicate entries
RITA

▸ What's it good for?
 ○ Beacon & long conn at scale
 ○ Some secondary attributes

▸ When to use it
 ○ Can better organize Zeek data
 ○ Good when you are comfortable scripting
 ○ Will scale but can be time consuming

▸ Where to get it
 https://github.com/activecm/rita
RITA example - beacons

Scale is 0 - 1 with 1.0 being a perfect beacon score
RITA example - C2 over DNS

```bash
thunt@hunt-one-day:~$ rita show-exploled-dns test | head -10
Domain,Unique Subdomains,Times Looked Up
cymru.com,227,502
hash.cymru.com,224,485
malware.hash.cymru.com,222,341
akadns.net,134,19282
edgekey.net,116,6342
akamaiedge.net,116,19680
microsoft.com,91,3116
amazonaws.com,89,6369
com.edgekey.net,83,5401
thunt@hunt-one-day:~$ 
```
TC,172.1.199.23,TCP_43,open,
TC,172.16.199.23,TCP_55443,open,
UC,172.16.199.23,UDP_626,open,serialnumberd/clientscanner likely nmap
scan Warnings:scan
UC,172.16.199.23,UDP_1194,open,openvpn/client Warnings:tunnel
UC,172.16.199.23,UDP_3386,open,udp3386/client
UC,172.16.199.23,UDP_5632,open,pcanywherestat/clientscanner
Warnings:scan
UC,172.16.199.23,UDP_64738,open,shodan_host/clientscanner abcdefgh
Unlisted host Warnings:scan
DN,fe80:0000:0000:0000:189f:545b:7d4c:eeb8,PTR,Apple
TV._device-info._tcp.local.,model=J105aA
Beacon/Threat Simulator

▷ Permits you to test your C2 detection setup
▷ Target any TCP or UDP port
▷ Can jitter timing
▷ Can jitter payload size
▷ Not designed to exfiltrate data!

`beacon-simulator.sh <target IP> 80 300 10 tcp 5000`

Connect to TCP/80 on target IP every 300 seconds, +/-10 seconds, vary payload between 0-5,000 bytes

https://github.com/activecm/threat-tools
What We Will Cover

▷ This section is mostly hands on labs
▷ Implement what you have learned
▷ Lab format:
 ○ Given a problem
 ■ Use earlier content to help solve
 ○ Given hints
 ■ If you don't know where to start, try the hints
 ○ Given the exact commands
 ○ Solution
 ■ Complete walk through of the solution
Reminder

▷ All lab files are on the VM
 ○ No network access needed
 ○ Unless you want to do third party research
 ○ Can also be done from your host system browser

▷ Login info
 ○ Name = thunt
 ○ Password = aybab2u

▷ Labs are in /home/thunt/lab*
Find long connections

▷ Files located in /home/thunt/lab1
▷ Provided with pcap and Zeek log files
▷ Identify
 ○ Top 10 longest connections between private and legal IP addresses (internal to external)
 ○ Top 10 cumulative communication time between private and legal IP addresses (internal to external)
Find long conns - Hints

▷ Long connections is a relative term. You need to know the length of time being audited.
▷ Pcaps don't store connection duration
▷ Zeek stores duration in conn.log
▷ Zeek-cut extracts fields from Zeek logs
▷ Datamash is useful for adding values
Useful commands to try

capinfos -aeu <pcap file>

cat conn.log | zeek-cut id.orig_h id.resp_h duration | sort -k 3 -rn | head

cat conn.log | zeek-cut id.orig_h id.resp_h duration | sort | grep -v -e '^$' | grep -v '-' | datamash -g 1,2 sum 3 | sort -k 3 -rn | head
Long conns - Answers

- Need to ID how long the pcap captured
- Use Zeek conn.log to easily get duration
- Need to extract:
 - Source IP (id.orig_h)
 - Destination IP (id.resp_h)
 - Duration of each connection (duration)
- Need to be able to:
 - Add up connection time between IP's
 - Present longest results first
less -S conn.log

<table>
<thead>
<tr>
<th>ts</th>
<th>uid</th>
<th>id.orig_h</th>
<th>id.orig_p</th>
<th>id.resp_h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1599652681.658987</td>
<td>Ci09Jy2pqA8n4Nhpnk</td>
<td>192.168.125.105</td>
<td>43742</td>
<td>91.189.88.142</td>
</tr>
<tr>
<td>1599652681.909864</td>
<td>C7ebxq76JCyTenVC4</td>
<td>192.168.125.105</td>
<td>55418</td>
<td>91.189.91.38</td>
</tr>
<tr>
<td>1599652682.160692</td>
<td>Ci54Bgp1AAP3g3Ai</td>
<td>192.168.125.105</td>
<td>56374</td>
<td>91.189.88.152</td>
</tr>
<tr>
<td>1599652682.411596</td>
<td>CIJ8Xh4WAfju0qEub6</td>
<td>192.168.125.105</td>
<td>36338</td>
<td>91.189.91.39</td>
</tr>
</tbody>
</table>

"duration" = duration
Identify time window being audited

24 hours = 86,400 seconds

Plan B for files too large for capinfos:

tcpdump -tttt -n -r <filename> | awk 'NR==1; END{print}'
Longest unique connections

Duration is just short of the full 86,398 second capture time
Longest talk time

Note the first entry is still the same, but all others are new. IPv6 addresses have shifted info to the right.
Investigate the longest talkers

▷ Let's investigate the external IP of the two longest session
 ○ 167.71.97.235
 ○ 52.179.219.14

▷ We'll use three common research methods
 ○ Check the dns.log file
 ○ AbuseIPDB
 ■ https://www.abuseipdb.com/
 ○ ThreatCrowd
 ■ https://www.threatcrowd.org/
Investigate - hints

▷ You were given the two IP addresses to research
▷ The dns.log file shows all DNS queries and answers that were returned
▷ Use a browser to connect to the two research Websites and enter each IP
One out of two is not bad

Second IP was contacted because system was trying to reach a microsoft.com host.
AbuseIPDB on first IP

167.71.97.235 was found in our database!

This IP was reported 3 times. Confidence of Abuse is 0%

ISP: DigitalOcean LLC
Usage Type: Data Center/Web Hosting/Transit
Hostname(s): demo1.aihosted.com
Domain Name: digitalocean.com
Country: United States of America
City: Clifton, New Jersey

IP info including ISP, Usage Type, and Location provided by IP2Location. Updated monthly.
AbuseIPDB data on 2nd IP

52.179.219.14 was found in our database!
This IP was reported 2 times. Confidence of Abuse is 0%.

ISP: Microsoft Corporation
Usage Type: Data Center/Web Hosting/Transit
Domain Name: microsoft.com
Country: United States of America
City: Boydton, Virginia

IP info including ISP, Usage Type, and Location provided by IP2Location.
Updated monthly.

REPORT 52.179.219.14
WHOIS 52.179.219.14
ThreatCrowd data on first IP

IP > 167.71.97.235

Is aihhosted.com a business partner? When in doubt, check with purchasing

We could try to verify this entry with a host/dig/nslookup query but that will actively send them data
ThreatCrowd data on 2nd IP

IP WHOIS

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Wilmington, United States</td>
</tr>
<tr>
<td>Country</td>
<td>United States</td>
</tr>
</tbody>
</table>

REVERSE DNS

<table>
<thead>
<tr>
<th>Domain</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>array503-prod-do.dsp.mp.microsoft.com</td>
<td>2022-04-11</td>
</tr>
<tr>
<td>orgeover-prod-do.dsp.mp.microsoft.com</td>
<td>2022-01-03</td>
</tr>
<tr>
<td>52.179.219.14</td>
<td>2021-10-12</td>
</tr>
<tr>
<td>array503-prod-do.dsp.mp.microsoft.com</td>
<td>2021-08-28</td>
</tr>
<tr>
<td>geo-prod-do.dsp.mp.microsoft.com</td>
<td>2021-03-16</td>
</tr>
<tr>
<td>disk2gusowcogijmyhs2m3rfecanscap.qv776wqszperz257u</td>
<td>2021-02-05</td>
</tr>
<tr>
<td>16.9805.3yicwqpc.1.6.065060m3cwr</td>
<td></td>
</tr>
<tr>
<td>etcipyin01292pionfseg4vaalmpzar-66.kzcygper?xsp?veyca2av.1</td>
<td>2020-12-18</td>
</tr>
<tr>
<td>.ealigmbrigel32ffy355ywybux</td>
<td></td>
</tr>
<tr>
<td>geo-prod-do.dsp.mp.microsoft.com</td>
<td>2020-12-18</td>
</tr>
<tr>
<td>geo-prod.dodsp.mp.microsoft.com.nsac.net</td>
<td>2020-09-23</td>
</tr>
<tr>
<td>shzrumco-d8dhw5.cestus2.atlas.cloudapp.azure.com</td>
<td>2020-05-29</td>
</tr>
<tr>
<td>ramercus-eastw2-a1464358-0.postgres.database.azure.com</td>
<td>2020-05-16</td>
</tr>
</tbody>
</table>
Next lab

- We verified aihhosted is a business partner
- The 2nd IP looks like Microsoft, but we want to verify
- Is there anything else in the data that can help with verification?
- Start with conn.log
 - Move to any applicable application logs
Hints

▷ We want to further verify 52.179.219.14
▷ Search conn.log for this IP address
▷ Is the "service" recognized?
▷ Check for a log file with that service name
▷ Search that log for the above IP
▷ Any helpful digital verification?
Looks like it's SSL/TLS traffic

<table>
<thead>
<tr>
<th>Time</th>
<th>Host</th>
<th>Port</th>
<th>Host Port</th>
<th>Bytes</th>
<th>Flags</th>
<th>Destination</th>
<th>Bytes</th>
<th>Flags</th>
<th>Source Port</th>
<th>Destination Port</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>1591290650.463848</td>
<td>Ce8vuV9pdZN1TTE21</td>
<td>65.389372</td>
<td>1270</td>
<td>3035</td>
<td>SF</td>
<td>192.168.99.51</td>
<td>52863</td>
<td>52.179.219.14</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1591292050.459124</td>
<td>CbnymM8GhENDKN6ol</td>
<td>95.406423</td>
<td>1270</td>
<td>3036</td>
<td>SF</td>
<td>192.168.99.51</td>
<td>52938</td>
<td>52.179.219.14</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1591293617.574816</td>
<td>CdOPg52V3t5AGGkjyf</td>
<td>68.280122</td>
<td>1270</td>
<td>3036</td>
<td>SF</td>
<td>192.168.99.51</td>
<td>52999</td>
<td>52.179.219.14</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1591295064.955993</td>
<td>CKXOFb4bJ1gZgL3sSW2</td>
<td>128.116421</td>
<td>1269</td>
<td>3036</td>
<td>RSTR</td>
<td>192.168.99.51</td>
<td>53150</td>
<td>52.179.219.14</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1591295092.098734</td>
<td>CjkEjk4m4GL1LSMJMd</td>
<td>113.248030</td>
<td>1246</td>
<td>3036</td>
<td>SF</td>
<td>192.168.99.51</td>
<td>53153</td>
<td>52.179.219.14</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>
Entry in ssl.log

thunt@thunt-labs:~/lab1$ grep 52.179.219.14 ssl.log | head -2
1591290650.502177 Ce8vuV9pdZNI1TTE21 192.168.99.51 52863 52.179.219.14
443 TLSv12 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 x25519 array503.prod.do dsp.mp.microsoft.com F - h2 T Fd3zBI3qZr5omLoAi7,FWU71E32doA3zMOCH (empty) CN=*.prod.do.dsp.mp.microsoft.com,OU=DSP,O=Microsoft,L=Redmond,ST=W A, C=US CN=Microsoft ECC Content Distribution Secure Server CA 2.1,O=Microsoft Corpor ation,L=Redmond,ST=Washington,C=US
1591292050.498723 CbnymM8GrENkN6o1 192.168.99.51 52938 52.179.219.14
443 TLSv12 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 x25519 array503.prod.do dsp.mp.microsoft.com F - h2 T Ffe59121NCCmoWeZnF,FMXEBQlsioEzUSPeza (empty) CN=*.prod.do.dsp.mp.microsoft.com,OU=DSP,O=Microsoft,L=Redmon d,ST=W A, C=US CN=Microsoft ECC Content Distribution Secure Server CA 2.1,O=Microsof t Corporation,L=Redmond,ST=Washington,C=US
thunt@thunt-labs:~/lab1$
What have we learned?

- Connection was SSL/TLS
- Server had a digital certificate
- The server_name matches the DNS query
- Only thing left would be to check that the cert is valid
 - Zeek can do this automatically
 - We have that feature turned off for these labs
 - Assume the cert is valid
Answers

▷ Longest connection appears to be business partner related
▷ Second longest is used in keeping Windows 10 updated
▷ Neither appear to be malware related
Find beacons by session size

▷ Use the same data files as last lab
▷ Identify which internal IP's are connecting to individual external IP's most frequently
▷ Focus on IP pairs that create thousands of connections per days
 ○ Beacons can have smaller quantities, but we need to start somewhere
▷ Is there consistency in session size?
 ○ Possible beacon?
Find beacons - hints

▷ You need to be able to clearly identify:
 ○ Number of unique connections over 24 hours
 ■ Not the number of packets
 ○ The amount of payload data transferred

▷ Pick targets - Who has most connections?

▷ Zeek displays both bytes sent and received
 ○ Focus on bytes sent
 ○ orig_bytes
Useful commands to try

cat conn.log | zeek-cut id.orig_h id.resp_h | sort | uniq -c | sort -rn | head

cat conn.log | zeek-cut id.orig_h id.resp_h orig_bytes | grep 192.168.99.51 | grep 104.248.234.238 | sort | uniq -c | sort -rn | head
Answers - most connections

```
thunt@thunt:~/lab1$ cat conn.log | zeek-cut id.orig_h id.resp_h | sort | uniq -c | sort -rn | head
3011 192.168.99.51 104.248.234.238
336 fe80::b8d7:3773:ab6e:7fc9 ff02::1:3
336 192.168.99.54 224.0.0.252
332 fe80::194f:796e:70e6:a5be ff02::1:3
332 192.168.99.55 224.0.0.252
330 fe80::fd16:6e8:118e:81cd ff02::1:3
330 192.168.99.53 224.0.0.252
319 fe80::d048:42e0:8448:187c ff02::1:3
319 192.168.99.52 224.0.0.252
297 192.168.99.51 208.67.222.222
```

The first looks potentially suspicious (no time analysis)
The rest are just local multicast traffic
Session size analysis

Every session resulted in 477 bytes sent to external host
This could indicate a beacon that was not activated over the 24 hours
Payload analysis with ngrep

- We found a suspicious IP pair
 - 192.168.99.51 to 104.248.234.238
- Let's analyze the payloads in these sessions
- Multiple tools can help here
 - But ngrep easily focuses on payload
- Use "host" parameter to focus in on the above IPs
Payload analysis - hints

▷ Ngrep is normally used to search for patterns within the payload of all packets

▷ You can use BP filters to:
 ○ Focus on specific IP addresses
 ○ Focus on specific ports
 ○ "host" focuses on specific IP addresses

▷ Helpful switches
 ○ "-q" = Don't print "#" for packets that don't match
 ○ "-I" (capital letter i) = Read from pcap file
Useful commands to try

ngrep -q -I trace1.pcap host 192.168.99.51 and host 104.248.234.238 | less
Things that make you go "humm"
What data are we sending?

▷ Is this the only URI we send to this host?
▷ We could eyeball it, but...
▷ Zeek stores this type of data
 ○ It's in the http.log file
▷ Let's use this log to identify all of the URI's requested from this external host
URI request - hints

▷ Zeek-cut is your friend
▷ We should extract
 ○ Source IP
 ○ Destination IP
 ○ The "uri" string
▷ Grep can focus on the traffic we care about
▷ Remember the threat hunter's mantra
 ○ sort | uniq | sort
Useful commands to try

```bash
cat http.log | zeek-cut id.orig_h id.resp_h uri |
grep 104.248.234.238 | sort | uniq -c | sort -rn
```
Single minded request

```bash
thunt@thunt:~$ lab1$ cat http.log | zeek-cut id.orig_h id.resp_h uri | grep 104.248.234.238 | sort | uniq -c | sort -rn
            3011 192.168.99.51 104.248.234.238 /rmvk30g/eghmbblnphlaefbmmnoenohhoncmcepapel
            efjjeokleokhjfjmnmijghedkienplidbcmigdjldbegpeemiboacnfcnpbnlnjmljpcejfpecdioiddkl
            fefgefcjbcnagjclnoijpaajlpkkegakmpdddojnlphegeehaacmofggdfkagpbighfknndllamaamdepdanhn
            ogedkoadhagakiiigoheminoonlaobdiiokpemghapnhbepbkepiffooljden;1;4;1
thunt@thunt:~$ lab1$
```
Answers

▷ 3,011 connections to external host
▷ Always sending the same odd "GET" request
▷ HTTP header data looks forged
▷ This really looks like a C2 channel
▷ Google search for "rmvk30g"
 ○ Looks like Fiesta EK malware

https://www.malware-traffic-analysis.net/2014/04/05/index.html
Look for C2 over DNS

▷ Move to the "lab2" directory
▷ Check to see if C2 over DNS is in play
▷ Consider any domain with more than 1,000 FQDNs in it suspect
 ○ Not interested in total quantity of queries
 ○ Interest in quantities of unique FQDNs
C2 over DNS - hints

- Zeek has a log file just for DNS traffic
- "query" field shows what was looked up
- Need a way to count hosts within a domain
- Some helpful text manipulation tools
 - sort = Pull together matching lines
 - uniq = Remove repeat entries
 - rev = Reverse the characters on a line
 - cut = Remove a section of characters on a line
Useful commands to try

cat dns.log | zeek-cut query | sort | uniq | rev | cut -d . -f 1-2 | rev | sort | uniq -c | sort -rn | head
C2 over DNS - Zeek

That first entry looks pretty odd
Answers

▷ We looked up 2,074 FQDNs within honestimnoteveil.com
▷ This extremely high for a domain we do not recognize
▷ Could very well indicate C2 over DNS
Query types used by C2

▷ Many C2 over DNS tools use TXT record types to create channel
▷ This is why many orgs focus on this type
 ○ Leverage NIDs signatures
▷ Is that true for this C2 channel?
▷ Lab time!
 ○ Identify what record types were used
Hints - C2 over DNS record types

▷ Will need to extract "qtype_name" and "query" for each record
▷ We only care about "honestimnotevil" records
▷ Once these are extracted, we can "cut" out the query types and use our mantra to summarize
Useful commands to try

cat dns.log | zeek-cut qtype_name query | grep honestimnotevil | cut -f 1 | sort | uniq -c | sort -rn
A mix of query types

```
 thunt@thunt:~/lab2$ cat dns.log | zeek-cut qtype_name query | grep honestimnotevil | cut -f 1 | sort | uniq -c | sort -rn
 707 MX
 692 TXT
 675 CNAME
```

707 + 692 + 675 = 2,074 (same as number of FQDNs found in first lab)
Answers

- Three different query types were used
 - Fairly even spread of quantities
- May be done to reduce the number of records for a specific type
- While TXT was used, may not be needed
- We can't just look for TXT records and hope to always catch C2
Repeat the labs with RITA

▷ Let's see if RITA makes this easier
▷ Zeek logs already imported into RITA
▷ Dataset names match directory names
 ○ Lab1 & lab2
▷ Repeat analysis for each
 ○ Beacons
 ○ Long connections
 ○ C2 over DNS
▷ Type "rita" for list of commands
Hints

▷ List current databases
 ○ rita list or rita show-databases

▷ Look for long connections
 ○ rita show-long-connections <database name>

▷ Look for beacons
 ○ rita show-beacons <database name>

▷ Look for C2 over DNS
 ○ rita show-exploded-dns <database name>
Useful commands to try

rita show-databases
rita show-long-connections lab1 | head

rita show-beacons lab1 | head

rita show-exploded-dns lab1 | head
Answers - Lab1

```
thunt@thunt:~/lab1$ rita show-long-connections lab1 | head -5
Source IP, Destination IP, Port, Protocol, Service, Duration
192.168.99.51, 104.118.9.117, 443:tcp:ssl, 166.14
192.168.99.51, 72.21.91.29, 80:tcp:- 80:tcp:http, 134.888

thunt@thunt:~/lab1$
thunt@thunt:~/lab1$ rita show-beacons lab1 | head -5
Score, Source IP, Destination IP, Connections, Avg. Bytes, Intvl Range, Size Range, Top Intvl, Top Size, Top Intvl Count, Top Size Count, Intvl Skew, Size Skew, Intvl Dispersion, Size Dispersion,
0.885, 192.168.99.51, 104.248.234.238, 3011, 1101, 246, 621, 28, 689, 1019, 2856, 0, 0, 1, 0
0.835, 192.168.99.51, 52.179.224.121, 72, 396, 11, 2, 1200, 183, 69, 69, 0, 0, 0, 0
0.586, 192.168.99.51, 208.67.220.220, 60, 245, 7741, 30, 1, 80, 3, 17, 0.117434, -0.25, 991, 4
0.585, 192.168.99.51, 52.184.217.56, 30, 5258, 2687, 122, 900, 1810, 1, 15, -0.434783, 0, 305, 1

thunt@thunt:~/lab1$
thunt@thunt:~/lab1$ rita show-explored-dns lab1 | head -5
Domain, Unique Subdomains, Times Looked Up
microsoft.com, 24, 226
mp.microsoft.com, 14, 117
dsp.mp.microsoft.com, 9, 109
prod.do.dsp.mp.microsoft.com, 8, 107

thunt@thunt:~/lab1$
```
thunt@thunt:~/lab1$ rita show-long-connections lab2 | head -5
No results were found for lab2
thunt@thunt:~/lab1$ rita show-beacons lab2 | head -5
No results were found for lab2
thunt@thunt:~/lab1$ rita show-exploded-dns lab2 | head -5
Domain,Unique Subdomains,Times Looked Up
honestimnotevil.com,2074,2074
8806d9a9068226a33b26e65071a0d496c751246292ec22b36bb5761c2762.5da0b7f90908be408ac43eb80a.honestimnotevil.com,21,21
5da0b7f90908be408ac43eb80a.honestimnotevil.com,21,21
6a22df8dcd8e5032f95c2406362b70ddc5843efe182166d82ecf895312d7.60a5291b4324545e080e62a0ea.honestimnotevil.com,7,7
thunt@thunt:~/lab1$
Answers - Final

▷ RITA provides a consistent interface for identifying C2
▷ Screens pull in additional helpful info
▷ Even very slow beacons can be detected
▷ Investigation can be scripted
▷ Open source, so anyone can use it for free
Next steps

▷ Do we feel confident in flagging anything we have seen as requiring incident handling?
▷ Are there any connections that need more research?
 ○ What should this research be?
 ○ Do we need to involve any other teams?
 ○ If we need more data collection, for how long?
Quick demo

▷ Similar data, seen through AI-Hunter
▷ Inexpensive commercial solution
▷ Automates much of the hunting process
24 active hunts of 24-hours of data every single day
Top results scored, alerts sent to SIEM
Long connections with lots of intel
View both individual and cumulative
Clear beacon analysis
By both timing and session size
Resources to dig deeper

- deep dive
- AbuseIPDB
- AlienVault
- apility.io
- ThreatCrowd
- Shodan
- Google
- Google DNS
- VirusTotal
- SecurityTrails
C2 over DNS analysis
Cyber Deception/Honey Tokens
Lateral movement detection with very low false positive rate
Deep dive analysis
Take home lab

- This is a bonus lab to do on your own
 - Wait at least a week
 - Will help identify what training "stuck"
 - Answers are provided at the end
- Move to the "lab3" directory
- Check for long connections and beacons
- Investigate any suspect external IP's
- Do you see anything of concern?
- Hints and answers after "Wrap Up" slide
Other courses I'm teaching

▷ Advanced Network Threat Hunting
 ○ 6/7 - 6/10 (4 hours per day)
 ○ $495
 https://www.antisyphontraining.com/advanced-network-threat-hunting-w-chris-brenton/

▷ Getting Started with Packet Decoding
 ○ No live class currently scheduled
 ○ On-Demand - $200 for 1 year access
Wrap Up

▷ Thanks for attending!
▷ Very special thank you to the folks behind the scenes
 ○ They give up their free time to help us all out
▷ Content feedback?
 ○ Please email: chris@activecountermeasures.com
Take home lab

▷ Move to the "lab3" directory
▷ Check for long connections and beacons
▷ Investigate any suspect external IP's
▷ Do you see anything of concern?
Hints for the take home lab

▷ Repeat what we did with "lab1"
 ○ Look for long connections
 ○ Look for cumulative communication time
 ○ Look for beacons
 ○ You can choose to jump right into RITA

▷ Us "up arrow" key to scroll through previous commands to find what you used earlier

▷ You've got this! :-}
Useful commands to try (1 of 2)

```bash
cat conn.log | zeek-cut id.orig_h id.resp_h duration | sort -k 3 -rn | head

cat conn.log | zeek-cut id.orig_h id.resp_h duration | sort | grep -v -e '^$' | grep -v '-' | datamash -g 1,2 sum 3 | sort -k 3 -rn | head

cat conn.log | zeek-cut id.orig_h id.resp_h | sort | uniq -c | sort -rn | head

host <IP address to investigate>
```
Useful commands to try (2/2)

rita show-databases
rita show-long-connections lab3 | head

rita show-long-connections lab3 | cut -d , -f 1,2,4 | sort | datamash -H -t , -g 1,2 sum 3 | sort -t , -k 3 -rn | head

rita show-beacons lab1 | head

rita show-exploded-dns lab1 | head
thunt@thunt:~/lab3$ cat conn.log | zeek-cut id.orig_h id.resp_h duration | sort -k 3 -rn | head
192.168.99.52 167.71.97.235 86387.734233
192.168.99.52 162.250.5.77 86347.153666
192.168.99.52 52.117.209.74 9868.617938
192.168.99.52 162.250.2.168 6735.118200
192.168.99.52 52.184.217.56 129.924272
192.168.99.52 52.184.212.181 129.754188
192.168.99.52 52.184.213.21 129.130822
192.168.99.52 52.184.212.181 129.123714
192.168.99.52 52.167.17.97 129.057349
192.168.99.52 52.167.17.97 128.896376
thunt@thunt:~/lab3$
thunt@thunt:~/lab3$ cat conn.log | zeek-cut id.orig_h id.resp_h duration | sort | grep -v -e '^$' | grep -v '-' | datamash -g 1,2 sum 3 | sort -k 3 -rn | head
192.168.99.52 167.71.97.235 86387.734233
192.168.99.52 162.250.5.77 86347.153666
192.168.99.52 52.117.209.74 9868.617938
192.168.99.52 52.184.217.56 7065.516309
192.168.99.52 52.184.213.21 7056.53546
192.168.99.52 162.250.2.168 6735.1182
192.168.99.52 52.184.212.181 6646.856637
192.168.99.52 239.255.255.250 2294.038962
fe80::d048:42e0:8448:187c ff02::c 2281.05815
fe80::2126:bd7:16f4:8cfd ff02::c 2242.310744
thunt@thunt:~/lab3$
Answers - Beacons

```
thunt@thunt:~/lab3$ cat conn.log | zeek-cut id.orig_h id.resp_h | sort | uniq -c | sort -rn | head

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.99.52</td>
<td>339</td>
</tr>
<tr>
<td>192.168.99.52</td>
<td>319</td>
</tr>
<tr>
<td>224.0.0.251</td>
<td></td>
</tr>
<tr>
<td>208.67.222.222</td>
<td></td>
</tr>
<tr>
<td>fe80::fd16:6e8:118e:81cd</td>
<td></td>
</tr>
<tr>
<td>fe80::fd16:6e8:118e:81cd</td>
<td></td>
</tr>
<tr>
<td>fe80::d048:42e0:8448:187c</td>
<td></td>
</tr>
<tr>
<td>fe80::d048:42e0:8448:187c</td>
<td></td>
</tr>
<tr>
<td>fe80::b8d7:3773:ab6e:7fc9</td>
<td></td>
</tr>
<tr>
<td>fe80::b8d7:3773:ab6e:7fc9</td>
<td></td>
</tr>
<tr>
<td>fe80::5d7e:4fb3:8fbc:d59</td>
<td></td>
</tr>
<tr>
<td>fe80::5d7e:4fb3:8fbc:d59</td>
<td></td>
</tr>
<tr>
<td>ff02::16</td>
<td></td>
</tr>
</tbody>
</table>
```

Nothing of note
thunt@thunt:~/lab1$ rita show-long-connections lab3 | head -5
Source IP, Destination IP, Port: Protocol: Service, Duration
192.168.99.52, 162.250.5.77, 5938: tcp: -, 86347.2
192.168.99.52, 52.117.209.74, 5938: tcp: -, 9868.62
192.168.99.52, 162.250.2.168, 5938: tcp: -, 6735.12
thunt@thunt:~/lab1$ rita show-beacons lab3 | head -5
0.835, 192.168.99.52, 52.230.222.68, 59, 546, 31350, 2696, 840, 181, 46, 48, 0, 0, 0, 0
0.834, 192.168.99.52, 52.242.211.89, 21, 826, 1651, 2696, 1680, 181, 14, 11, 0, 0, 0
0.833, 192.168.99.52, 104.71.255.238, 24, 5429, 21721, 40, 1800, 505, 16, 22, 0, 0, 0
0.658, 192.168.99.52, 52.184.213.21, 65, 5392, 2199, 120, 900, 1883, 28, 33, 0.99757, 0, 1, 0
thunt@thunt:~/lab1$ rita show-exploded-dns lab3 | head -5
Domain, Unique Subdomains, Times Looked Up
microsoft.com, 10, 237
teamviewer.com, 6, 36
mp.microsoft.com, 5, 111
8.e.f.ip6.arpa, 4, 20
thunt@thunt:~/lab1$
Answers - Investigate IPs

```
thunt@thunt:~/lab3$ host 167.71.97.235
235.97.71.167.in-addr.arpa domain name pointer demo1.aihosted.com.
thunt@thunt:~/lab3$ host 162.250.5.77
77.5.250.162.in-addr.arpa domain name pointer US-NJC-ANX-R010.teamviewer.com.
thunt@thunt:~/lab3$ _
```

Business need?
Answers - Final

- Two long connections found
- Unlikely (but not impossible) we have any beacons
- For the two long connections
 - First was discussed earlier (business partner)
 - The second is TeamViewer
- Is there a business need to run TeamViewer on this system?