

Network Threat Hunter Training

Level 1

Thanks to our sponsors!

2

Other courses I'm teaching

Advanced Network Threat Hunting
 Shooting for Sept - Oct
 \$495

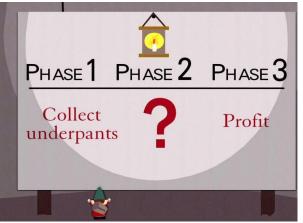
https://www.antisyphontraining.com/advanced-network-threat-hunting-w-chris-brenton/

Getting Started with Packet Decoding

 July 12 - 15
 Pay what you can - \$30+

https://www.antisyphontraining.com/event/getting-started-with-packet-decoding-w-chris-brenton/

Before we get started


- You'll need the class VM to do the labs
- Or run the install script
- Or deploy on DigitalOcean
- Login info:
 - Name: thunt
 - Pass: aybab2u
- ▷ This should have been done before class :-)
- Slides are available on Discord

Logistics

- ▷ 10 minute break at top of each hour
- ▷ 20 minute break at 3 hour point
- Use the Discord channel for discussion
 - #acm-webcast-chat channel
- > The team is monitoring for your questions

In this webcast

- I'm going to question some industry accepted standard practices
 - Because what we are doing is broken
 - And it's not getting any better
 - Will diverge from the norm
- Please keep an open mind
- Prime cognitive bias fodder

Modern attackers

- The vision of a lone hacker in the basement is dangerously outdated
- It's about profit, not mass infection
 - Attacks are now well funded
- Attacks are now targeted which means:
 - \circ $\,$ They do their homework on your environment $\,$
 - Malware is customized for your campaign
 - Attack infrastructure is customized as well
- Attackers innovate for each new target

How we (try to) catch the bad guys

- Centralized log collection
- Write "signatures" to identify patterns that may indicate an attack
 - Patterns in the log messages
 - Matches against intel feeds
- Alert on signature matches
- ▷ Follow up on alerts

Limitations of system logging

- Syslog was not designed for security
 - Facility 13 is "security/log audit"
 - But rarely used in a general security context
 - More appropriate as a severity level
 - But there is no "security" severity level
- No standard for message context
 - Different platforms log events differently
 - Different applications log events differently
- Decoder ring not included

Limitations of deployment

- Every device and system?
- Are you sure?
- Are you REALLY sure?
 - I have yet to see an environment that can accurately make this claim
 - $\circ~$ Even when you log, adversaries can disable this

"Fail open" system

- Can access Internet without logging and no alert
- Can you detect disabled logging?

What are signatures?

- Basically RegEx for logs
- Match known bad patterns
- Because adversaries have stopped innovating and we now know all of the possible bad patterns they can use
- ▷ Oh wait...
- Sigs are also the 1990's anti-virus model

Lack of innovation

- Log RegEx matching is old
 - Older than IDS
 - Older than firewalls
- First SANS logging course early 2000's
- Not much has changed

OK to still wear parachute pants?

Are we getting better at detection?

- Interesting nuggets in Mandiant's M-Trends 2022 report
- Dwell time is down to less than 30 days
 - Skewed by Ransomware at 4 days
 - But drop shows no correlation to breach effect
- For threats Mandiant investigated:
 - 58% had been in place over 700 days
 - 20% had been in place over 90 days

https://www.mandiant.com/media/15671

So is log review threat hunting?

Just to review

- Protocol can't describe security events
- It's a fail open system
- We try to pattern match on old attack patterns
- False positive rates are extremely high
- It's old technology
- > The data says otherwise
- ▷ This process is clearly broken
- We need to assess new ideas and improve

I'm good, I use threat intel feeds

- Match on IP because someone said it's bad
- Also based on 1990's AV technology
- Is the data really actionable?
 - Adversaries frequently change IPs and DNS
 - Tend to use shared IP space
 - The accuracy is dependent on the reporter
- A threat intel match does not mean you've prevented an attack

Can I threat hunt with my NIDS?

SmarTTY-16771123148
File Edit View SCP Settings Help
cbrenton@cbrenton-lab-testing:/var/log/suricata\$ head -2 fast.log
01/30/2018-18:17:06.337205 [**] [1:2027390:2] ET USER AGENTS Microsoft Device Metadata Retrieval client Us
er-Agent [**] [Classification: Unknown Traffic] [Priority: 3] {TCP} 10.55.182.100:14314 -> 104.79.151.15:80
01/30/2018-18:17:07.017556 [**] [1:2027390:2] ET USER AGENTS Microsoft Device Metadata Retrieval Client Us
er-Agent [**] [Classification: Unknown Traffic] [Priority: 3] {TCP} 10.55.182.100:14317 -> 104.79.151.15:80
cbrenton@cbrenton-lab-testing:/var/log/suricata\$ grep -v 'Microsoft Device Metadata Retrieval' fast.log h
ead -2
01/30/2018-18:17:06.662884 [**] [1:2025275:1] ET INFO Windows OS Submitting USB Metadata to Microsoft [**]
[Classification: Misc activity] [Priority: 3] {TCP} 10.55.182.100:14315 -> 40.80.145.38:80
01/30/2018-18:17:06.903781 [**] [1:2025275:1] ET INFO Windows OS Submitting USB Metadata to Microsoft [**]
[Classification: Misc activity] [Priority: 3] {TCP} 10.55.182.100:14315 -> 40.80.145.38:80
cbrenton@cbrenton-lab-testing:/var/log/suricata\$ grep -v 'Microsoft Device Metadata Retrieval' fast.log g
rep -v 'INFO Windows OS Submitting' head -2
01/30/2018-21:12:15.378653 [**] [1:2027758:2] ET DNS Query for .cc TLD [**] [Classification: Potentially B
ad Traffic] [Priority: 2] {UDP} 10.55.200.10:53219 -> 172.16.200.11:53
01/30/2018-23:17:10.330756 [**] [1:2027758:2] ET DNS Query for .cc TLD [**] [Classification: Potentially B
ad Traffic] [Priority: 2] {UDP} 10.55.200.10:54451 -> 172.16.200.11:53
cbrenton@cbrenton-lab-testing:/var/log/suricata\$ grep -v 'Microsoft Device Metadata Retrieval' fast.log g
rep -v 'INFO Windows OS Submitting' grep -v 'DNS Query for .cc' head -2
cbrenton@cbrenton-lab-testing:/var/log/suricata\$
chrentrefichenter labeleting harlogherica
SCP. No transfers

But empire and dnscat2 were missed

What Threat Hunting should be

- A proactive validation of all systems
 connected to the organization's network
- Needs to include all systems
 - Desktops, laptops, cellphones, tablets
 - Servers, network gear, printers
 - IoT, IIoT, any type of Internet "Thing"
- Execute without making assumptions
- Deliverable is a compromise assessment

The Purpose of Threat Hunting

Protection

Firewalls Intrusion Detection VPNs Proxies Anti-Virus 2-Factor Authentication Pentesting Auditing Dwell time between infiltration and detection

Threat Hunting should reduce the gap between protection failure and response as much as possible!

Response

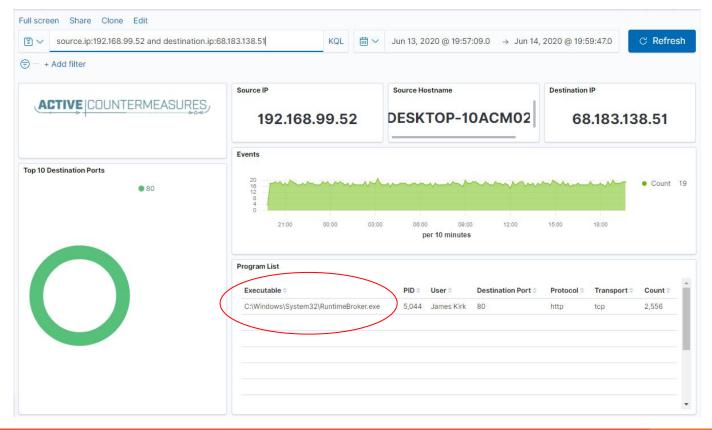
Incident Handling Log Review Forensics Public Relations Cyber Insurance

What threat hunting is not

- Managing SOC alerts
- Check logs for suspect activity
- Check dashboards for unusual activity
- Monitor and respond to EDR alerts
- > These are all reactive activities
- > Threat hunting is a proactive process

The process of threat hunting

- Review the integrity of every device
 Desktops converse notwork seer lot list of
 - Desktops, servers, network gear, IoT, IIoT, etc.
- Generate one of 3 dispositions
 - I'm pretty certain the system is safe
 - I'm pretty certain the system is compromised
 - I'm unsure of state so will collect additional info to derive one of the above two results
- Leverage context for host log review


Proposal - Start with the network

- > The network is the great equalizer
 - You see everything, regardless of platform
 - High level assessment of the terrain
- You can hide processes but not packets
- Malware is usually controlled
 - Which makes targeting C2 extremely effective
 - Identify compromise when C2 "calls home"
 - Must be frequent enough to be useful
- Wide view so you can target from there

Start on the network

THEN pivot to the system logs

Don't cross "the passive/active line"

- All threat hunting activity should be undetectable to an adversary
- Passive in nature
 - Review packets
 - Review SIEM logs
- If active techniques are required, we must trigger incident response first
 - Example: Isolating the suspect host
 - Example: Running commands on suspect host

C2 Detection Techniques

Where to Start

- Traffic to and from the Internet
 Monitor internal interface of firewall
- Packet captures or Zeek data
- Analyze in large time blocks
 - More data = better fidelity
 - Minimum of 12 hours, 24 is ideal
- Analyze communications in pairs
 - Every outbound session passing the firewall
 - Ignore internal to internal (high false positive)

Threat score system - Updated

Our job is to disposition IPs

- How do you know when to make a choice?
- A numeric system can help guide you
 - Score of 0 = system is safe
 - Score of 100 = system is compromised
- Score modifiers
 - Major A clue that strongly indicates integrity state
 Minor A clue that peripherally indicates integrity state

Why not score each system?

- Data points are easily conflated
 - Points for persistence, JA3 hash & intel match
 - But are they all part of the same session?
- You are not hunting systems, you are hunting connection persistency
 - Your process & scoring should reflect this
- Fewer distractions
 - Focus on the persistence
 - Don't lose focus going after unrelated attributes

Threat hunting process order

- Connection persistency
- Business need for connection?
- Abnormal protocol behaviour
- Reputation check of external IP
- Investigation of internal IP
- Disposition
 - No threat detected = add to safelist
 - Compromised = Trigger incident handling

Does targeting C2 have blind spots?

- Attackers motivated by gain
 - Information
 - Control of resources
- Sometimes "gain" does not require C2
 - Just looking to destroy the target
 - Equivalent to dropping a cyber bomb
 - We are talking nation state at this level
- NotPetya
 - Worm with no C2 designed to seek and destroy

Techniques Vs Methodology

- ▷ We are going to deep dive on finding C2
- It's important to understand what needs to happen "under the hood"
- Some of these techniques don't scale
 - Manually breaking out connection pairs
 - But that's OK
- Will focus on tools in a later module
- ▷ For now, focus on just the techniques

Bad guys Vs. Red Teams

- Bad guys = C2 is part of a business model
- Red team = C2 is why they get paid
- Much harder to detect red team C2 than the real bad guys
 - In the wild, most evil C2 beacons <= 1/minute
 - Red team on long term contract <= 1/week
- ▷ Focus will be on the bad guys

Long connections

- ▷ You are looking for:
- > Total time for each connection
 - Which ones have gone on the longest?
- Cumulative time for all pair connections
 - \circ $\,$ Total amount of time the pair has been in contact $\,$
- Can be useful to ignore ports or protocols
 - C2 can change channels

Long connection examples

24 Hours

SYN

FIN

		· · _ · _ · _ · _ · _ · _ · _
I SVNI I I LINI I	SYN	FIN
JTIN FIIN JTIN FIIN JTIN FIIN JTIN FIIN		

Connection timing from Zeek

cbrentor #separat	n@zeek-3- cor ∖x09	-3-rc2:/0	opt/bro/1	logs/2019	9-07-17\$	zcat cor	nn.00\:00)\:00-01	\:00 \: 00	.log.gz	head -	10
#set sep	parator	,										
#empty f		(empty)										
#unset f												
	conn											
#open 2019-07-17-00-00-00												
#fields		uid	id.orig	h	id.orig	q	id.resp	h	id.resp	q	proto	ser
vice	duration	1	orig by		resp byt		conn sta		local of		local r	esp
missed t	oytes	history	orig pkt		orig ip		resp pkt	LS.	resp ip		tunnel	
nts -							- <u>-</u> +					
#types	time	string	addr	port	addr	port	enum	string	interval	1	count	cou
nt	string	bool	bool	count	string	count	count	count	count	set[str	ing]	
15633215	592.26621	16	CRP5W73	KxGUYtn2X	KQh -	185.176.	27.30	48086	104.248	.191.205	20391	tcp
- (0.265051		0	0	REJ	F	F	0	SrR	2	80	1
40	(empty)											
15633215	592.26621	L8	CjZ8aQ27	AoHDrshe	JAj	185.176.	27.30	48086	104.248	.191.205	20391	tcp
-	0.265051		0	0	REJ	F	F	0	SrR	2	80	1
40	(empty)											
cbrenton@zeek-3-3-rc2:/opt/bro/logs/2019-07-17\$												

less -S conn.log

<pre>#separator \x09</pre>				/
<pre>#set separator</pre>	,			
#empty_field	(empty)			
#unset field				
#path	conn			
#open	2021-10-13-15-47-50			
#fields	ts	uid	id.orig_h	id.orig_p
#types	time	string	addr	port
1599652681.658987	Ci09jy2pQa8n4Nhpnk	192.168.125.105	43742	91.189.88.142
1599652681.909864	C7ebxg76JCvTenVC4	192.168.125.105	55418	91.189.91.38
1599652682.160692	Ciy54Bgp1AAP3g3Ai	192.168.125.105	56374	91.189.88.152
1599652682.411596	CIJ8Xh4WAfju0gEub6	192.168.125.105	36338	91.189.91.39
1599652681.643945	CfGhY0bXVYn9DET8	127.0.0.1	33915	127.0.0.53
1599652681.644119	CPCY5P1CD1nAxjVHG7	192.168.125.105	53240	8.8.8.8
1599652681.651291	CiKUI24evOEENjqzg5	127.0.0.1	58816	127.0.0.53
1599652681.651392	CEY8xNH9QzkxBCGvl	192.168.125.105	38521	8.8.8.8
1599652681.651543	CZs8CI12RnoQOgn0dg	192.168.125.105	55633	8.8.8.8

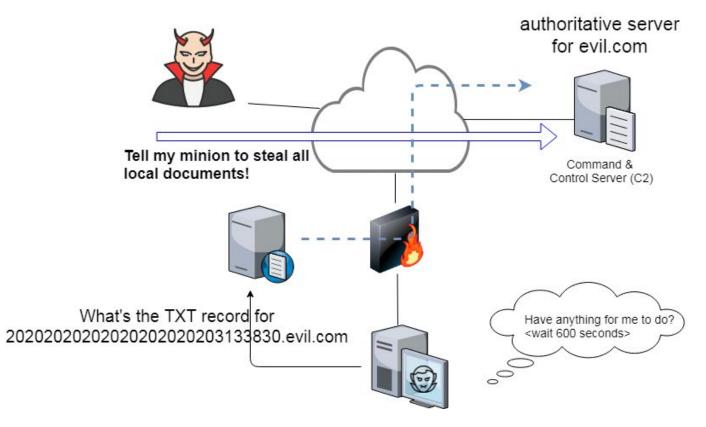
Longest duration with Zeek

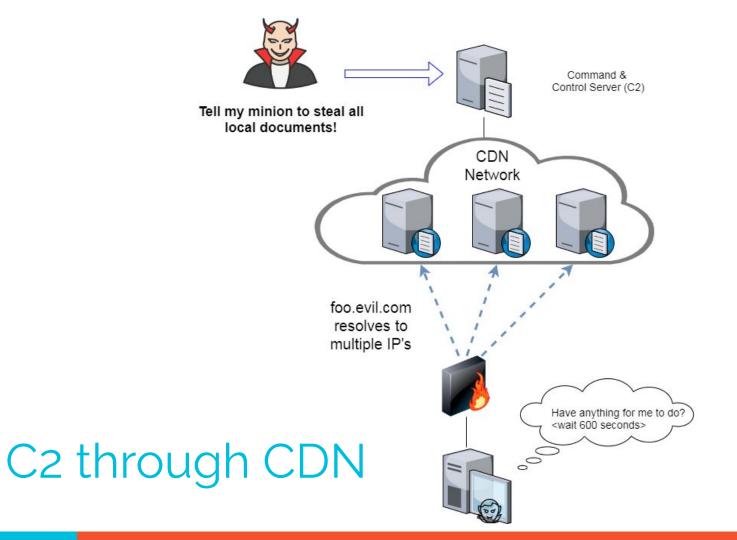
thunt@thunt-lab	s:~/lab1\$ cat con	nn.log zeek-cut id.orig h id.resp h duration
sort -k 3 -r	n head	
192.168.99.51	167.71.97.235	86389.659357
192.168.99.51	104.248.234.238	243.768999
192.168.99.51	104.118.9.117	166.139547
192.168.99.51	72.21.91.29	134.888177
192.168.99.51	52.184.216.246	129.075227
192.168.99.51	52.167.249.196	128.957107
192.168.99.51	52.184.216.246	128.481757
192.168.99.51	13.107.5.88	128.346889
192.168.99.51	52.179.219.14	128.116421
192.168.99.51	13.107.5.88	128.042647
thunt@thunt-lab	s:~/lab1\$	

Cumulative talk time with Zeek

thunt@thunt-labs:~/lab1\$ cat co	<pre>nn.log zeek-cut id.orig_h id.resp_h duration sort</pre>
grep -v -e '^\$' grep -v '-'	datamash -g 1,2 sum 3 sort -k 3 -rn head
192.168.99.51 167.71.97.235	86389.659357
192.168.99.51 52.179.219.14	4067.394413
192.168.99.51 52.184.217.56	2936.172839
192.168.99.51 52.184.216.246	2825.858
192.168.99.52 239.255.255.250	2507.626732
fe80::d048:42e0:8448:187c	ff02::c 2434.977049
192.168.99.51 239.255.255.250	2374.546469
fe80::2126:bcd7:16f4:8cdb	ff02::c 2368.234679
192.168.99.51 13.107.5.88	1317.047871
192.168.99.51 52.167.249.196	868.46966
thunt@thunt-labs:~/lab1\$	

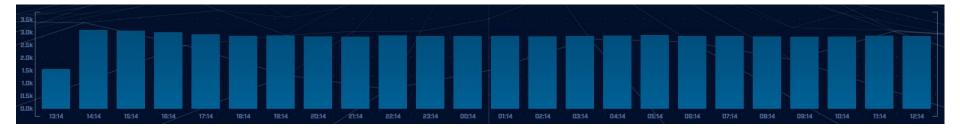
What about firewalls?


- Surprisingly hard to get this info
- ▷ "Timing" tends to be TTL, not duration
- ⊳ BSD
 - pftop output connection age in seconds
- Junos
 - \circ $\,$ show security flow session extensive node all
 - Duration in seconds


What is a beacon?

- Repetitive connection establishment between two IP addresses
 - Easiest to detect
- Repetitive connection establishment
 between internal IP and FQDN
 - Beacon broken up over multiple IP's
 - Usually a CDN provider
 - Target IPs also destination for legitimate traffic
 - Far more difficult to detect

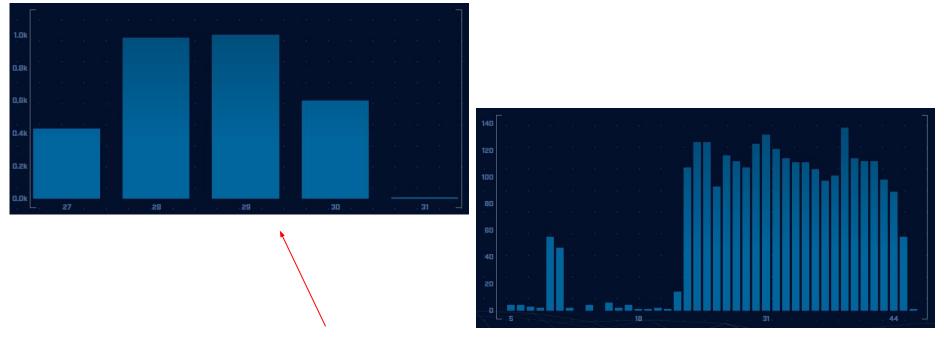
C2 over DNS



Beacon detection based on timing

- May follow an exact time interval
 - Technique is less common today
 - Detectable by k-means
 - Potential false positives
- May introduce "jitter"
 - Vary connection sleep delta
 - Avoids k-means detection
 - False positives are extremely rare
- Short enough delta for terminal activities

Connection quantity VS time


Each bar represents the number of times the source connected to the destination during that one hour time block

Connect time deltas with no jitter

70k															
60k	12														
50k	×.														
29	181														
40k															
30k	370														
20k	18	2													
10k	- 12	2													
-	3.53														
Ok	1		-	118	×	235	 3	152	469	. 586	al Ì	703	S	820	

How often a specific time delta was observed

Connection time deltas with jitter

Cobalt Strike will typically produce a bell curve

Detection based on session size

- Focuses on detection of the heartbeat
- Variations from the heartbeat indicate activation of C2 channel
- Session size can help reveal info regarding commands being issued
- Possible to randomly pad but this is extremely rare

Session size analysis

100k																		
BOk																		
-																		
60k																		
			- 33															
40k																		
20k			- 28															
			÷															
Ok	- 60			99			138	8	17	7		21	16		. 25	55		_
											_		/					
	Heartbeat										Ac	tiva	atic	n				

Detecting beacons with jitter

- Easier to detect when normalized out over long periods of time
 - Average the time deltas for each hour
 - Plot over 24 hours
- Should make a beacon even more suspect
 - False positives don't obscure their beacon timing
 - High probability of being evil

Is there a business need?

Can I get false positives?

- ▷ Sort of...
- Checking for connection persistency
- > Then checking for business need
- It's possible to have persistent connections with a legit business need
 - NTP
 - Windows Notification Services
 - Checking for patches

C2 Detection Techniques Part 2

What next?

- You've identified connection persistence
- You can't identify a business need
- Next steps
 - Protocol analysis
 - Reputation check of external target
 - Investigate internal IP address

Unexpected app or port usage

- There should be a business need for all outbound protocols
- Research non-standard or unknown ports
 - TCP/5222 (Chrome remote desktop)
 - TCP/5800 & 590X (VNC)
 - TCP/502 (Modbus)

Unknown app on standard port

- C2 wants to tunnel out of environment
 - Pick a port likely to be permitted outbound
 - Does not always worry about protocol compliance
- Check standard ports for unexpected apps
 Indication of tunneling
- Different than app on non-standard port
 - This is sometimes done as "a feature"
 - Example: SSH listening on TCP/2222

Zeek decodes many apps

- Detect over 50 applications
 HTTP, DNS, SIP, MYSQL, RDP, NTLM, etc. etc.
- ▷ Fairly easy to add new ones
 - Example: HL7 if you are in healthcare
- Checks all analyzers for each port
- Does not assume WKP = application

Zeek example

thunt@thunt-labs:~/lab1\$ c	at conn.log zee	k-cut	id.ori	g h id	.resp h	id.resp p
proto service orig_ip_byt	es resp_ip_bytes	colu	mn -t	head		
192.168.99.51	104.248.234.238	80	tcp	http	689	403
192.168.99.51	23.223.200.136	80	tcp	-	80	40
192.168.99.51	104.248.234.238	80	tcp	http	729	443
192.168.99.52	224.0.0.251	5353	udp	dns	344	0
fe80::d048:42e0:8448:187c	ff02 :: fb	5353	udp	dns	424	0
fe80::d048:42e0:8448:187c	ff02::1:3	5355	udp	dns	81	0
192.168.99.52	224.0.0.252	5355	udp	dns	61	0
fe80::d048:42e0:8448:187c	ff02::1:3	5355	udp	dns	81	0
192.168.99.52	224.0.0.252	5355	udp	dns	61	0
192.168.99.51	104.248.234.238	80	tcp	http	689	403
thunt@thunt-labs:~/lab1\$						

Unexpected protocol use

- Attackers may bend but not break rules
- ▷ This can result in:
 - Full protocol compliance
 - Abnormal behaviour
- Need to understand "normal"
 - For the protocol
 - For your environment

Example: Too many FQDNs

- How many FQDNs do domains expose?
 - \circ Most is < 10
 - Recognizable Internet based vendors 200 600
 - Microsoft
 - Akamai
 - Google
 - Amazon
- ▷ Greater than 1,000 is suspicious
- Could be an indication of C2 traffic

Detecting C2 over DNS

- Capture all DNS traffic
 - Capture tool of your choice
 - Longer the capture time, the better
- Filter so it's DNS traffic only
- Extract to text so we can sort and count
- Review total FQDNs per domain

Counting FQDNs per domain

cbrenton@cbrenton-lab-testing:~/lab-thunt\$ tshark -r thunt-lab.pcapng -T fields -e dn s.qry.name | sort | uniq | rev | cut -d '.' -f 1-2 | rev | sort | uniq -c | sort -rn | head -10

- 62468 r-1x.com
 - 154 akamaiedge.net
 - 125 akadns.net
 - 121 edgekey.net
 - 104 amazonaws.com
 - 67 microsoft.com
 - 51 dynect.net
 - 45 parsely.com
 - 44 akam.net
 - 43 cloudfront.net

cbrenton@cbrenton-lab-testing:~/lab-thunt\$

Breaking it down

cbrenton@cbrenton-lab-testing:~/lab-thunt\$ tshark -r thunt-lab.pcapng -T fields -e dn s.qry.name | sort | uniq | head -4

0000011239458783cf.dnsc.r-1x.com 00000176d2f1ce66e2.dnsc.r-1x.com 0001011239458783cf.dnsc.r-1x.com cbrenton@cbrenton-lab-testing:~/lab-thunt\$ tshark -r thunt-lab.pcapng -T fields -e dn s.qry.name | sort | uniq | rev | head -4

moc.x1-r.csnd.fc3878549321100000
moc.x1-r.csnd.2e66ec1f2d67100000
moc.x1-r.csnd.fc3878549321101000
cbrenton@cbrenton-lab-testing:~/lab-thunt\$ tshark -r thunt-lab.pcapng -T fields -e dn
s.qry.name | sort | uniq | rev | cut -d '.' -f 1-2 | rev | head -4

r-1x.com

r-1x.com r-1x.com Cut out subdomains and reverse characters on the line. We can now count the number of unique FQDNs queried per domain

C2 over DNS analysis with Zeek

- Same process as last two slides
- Use zeek-cut to extract "query" field

cat dns.* | zeek-cut query | sort | uniq | rev | cut -d '.' -f 1-2 | rev | sort | uniq -c | sort -rn | head

Bonus checks on DNS

- Check domains with a lot of FQDNs
- Get a list of the IPs returned
- Compare against traffic patterns
 - Are internal hosts visiting this domain?
 - Is it just your name servers?
- Unique trait of C2 over DNS
 - Lots or FQDN queries
 - But no one ever connects to these systems

Normal DNS query patten

Subdomain Threshold		e e e e es		* * * * * * * * * * *		2) 2) 2 2 (2) 2) 2) 4 2 2 20 2		UNTER
(4) 4								DATABASE: DNSCAT2-BEACON MODULE: DNS VIEW: DNS ANALYSIS
	Subdomains	Lookups	Domain					
an a	62468	109227	r-1x.com				DNS Queries [3]	an an an ar a y a n an ar an
	62466	108911	dnsc.r-1x.com				Direct Connections [13]	Count
- 100 - 10 - 310 - 0	154	27381	akamaiedge.net				10.55.100.111	869 532
	125	13907	akadns.net				10.55.100.109	489 477
- 355 - 51 - 5 - 266 - 81	121	7110	edgekey.net				10.55.100.103 10.55.100.104	462 446
		13297	amazonaws.com				10.55.100.110 10.55.100.107	443 443
	90	13259	elb.amazonaws.com				10.55.100.106	442
					K K 1/9680	× >ı		

Things that make you go "hummm"

Subdomain Threshold	а е е е е 				8 8 8 9 9 9 8 8 8 8 9 8 8 8 8 8		UNTER DATABASE: DNSCAT2-BEACON MODULE: DNS
242 - 42							VIEW: DNS ANALYSIS
ini n	Subdomains	Lookups	Domain				
	· · · · · 62468 ·	109227	r-1x.com			DNS Queries ([1])	e se se s v e se se
inan ar i	62466	108911	dnsc.r-1x.com			Direct Connections [1] Host	Count
	154	27381	akamaiedge.net			192.168.88.2	108858
	125	13907	akadns.net				
	121 s	7110	edgekey.net				
	101	13297	amazonaws.com				a car o car o car
	90	13259	elb.amazonaws.com				
				1< < 1/9680			

Look for odd HTTP user agents

10.0.2.15 identifies itself as:

Windows 10 when speaking to 27 IP's on the Internet Windows XP when speaking to one IP on the Internet

Unique SSL Client Hello: Zeek + JA3

SSL/TLS Hash	Seen Requests	Sources
		a x x x x a x
5e573c9c9f8ba720ef9b18e9fce2e2f7	1 clientservices.googleapis.com	10.55.182.100
		e e a a a e e e e e e e e e e e e e e e
bc6c386f480ee97b9d9e52d472b772d8	2 clients4.google.com, 556-emw-319.mktoresp.com	10.55.182.100
f3405aa9ca597089a55cf8c62754de84	2 builds.cdn.getgo.com	10.55.182.100
28a2c9bd18a11de089ef85a160da29e4	2 mediaredirect.microsoft.com	10.55.100.105, 10.55.182.100
08bf94d7f3200a537b5e3b76b06e02a2	4 files01.netgate.com	192.168.88.2

Check destination IP address

Start simple

- Who manages ASN?
- Geolocation info?
- IP delegation
- PTR records
- Do you recognize the target organization?
 - Business partner or field office
 - Current vendor (active status)
- Other internal IP's connecting?

Check threat intel on target IP

Need to understand:

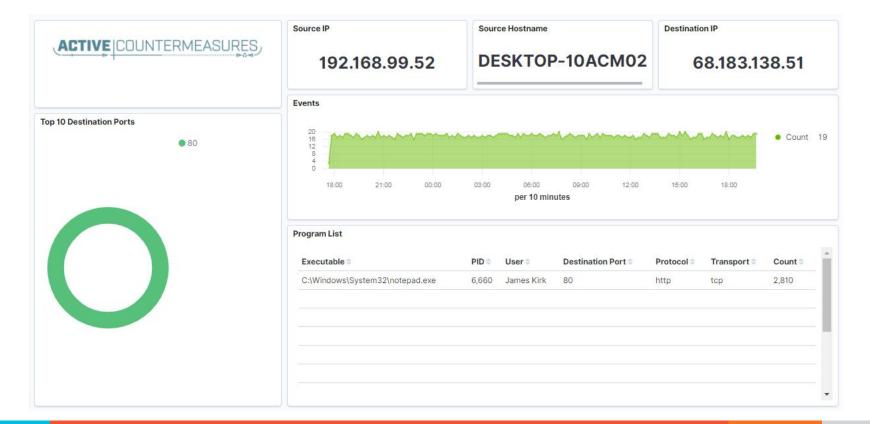
- When was the record first created?
- Why was the record created?

https://www.abuseipdb.com/check/<ip address> https://dnslytics.com/ip/<IP address> https://transparencyreport.google.com/safe-browsing/search?url=<IP, FQDN or URL>

Internal system

- Info available varies greatly between orgs
- Inventory management systems
- Security tools like Carbon Black
- OS projects like BeaKer
- Internal security scans
- DHCP logs
- Login events
- Passive fingerprinting

Leverage internal host logging


- Network shows suspicious traffic patterns
- Use this data to pivot to host logs
- ▷ Filter your logs based on:
 - Suspect internal host
 - Timeframe being analyzed
- Anything stand out as unique or odd?

Sysmon Event ID Type 3's

Seneral Details			
Friendly View	View		
		*	
+ System			
- EventData			
RuleName			
UtcTime	2019-11-19 19:20:12.465		
ProcessGuid	{8FFDB2F1-BC9E-5DCB-0000-0010E4450D00}		
ProcessId	4448		
Image	C:\Users\chris\AppData\Local\slack\app-4.1.2\slack.exe		
User	chris-PC\chris		1
Protocol	tcp		
Initiated	true		ſ
SourceIsIpv6	false		U
SourceIp	10.0.204		
SourceHostnan	ne chris-PC.hsd1.fl.comcast.net		
SourcePort	43862		
SourcePortNan	ne		
DestinationIsIp	v6 false		
DestinationIp	13.226.93.151		
DestinationHos	stname server-13-226-93-151.atl52.r.cloudfront.net		
DestinationPor	t 443		
DestinationPor	tName https		

Map outbound connections to the applications that created them.

Sysmon Type 3 + BeaKer

But I have no system logs!

- Might be a good time to start collecting them
- Full packet captures from system
- Apply additional network tools to collect more data

What next?

- Disposition session
 - "I think it's safe" = add to safelist
 - "I think we've detected a compromise" = Incident response mode
- Remember to leave no footprints
 - All actions should be undetectable to potential adversaries
 - Passive activities only
- Incident response may include active tasks

C2 Detection Tools

tcpdump

- What's it good for?
 - Lightweight packet capturing tool
 - Cross platform support (windump on Windows)
- When to use it
 - Audit trail of all traffic
 - Can also filter to see only specific traffic
 - Can be fully automated
- Where to get it

Tcpdump example

- Debian/Ubuntu
 - Place the following in /etc/rc.local
- Red Hat/CentOS, Fedora
 - Place the following in /etc/rc.d/rc.local
- Grabs all traffic and rotates every 60 min
 - Date/time stamped and compressed

```
#Place _above_ any "exit" line
mkdir -p /opt/pcaps
screen -S capture -t capture -d -m bash -c "tcpdump -ieth0 -G
3600 -w '/opt/pcaps/`hostname -s`.%Y%m%d%H%M%S.pcap' -z bzip2"
```

capinfos

- Print summary info regarding pcaps
- ▷ For a decent hunt you want 12+ hours
- ▷ 86,400 seconds = 24 hours

cbrenton@guess:~/c2\$	capinfos -aeu evilosx_24hr.pcap				
File name:	evilosx 24hr.pcap				
Capture duration:	86291.558021 seconds				
First packet time:	2021-02-17 03:40:26.100491				
Last packet time:	2021-02-18 03:38:37.658512				
cbrenton@guess:~/c2\$					

tshark

What's it good for?

- Extracting interesting fields from packet captures
- Multiple passes to focus on different attributes
- Combine with text manipulation tools
- Can be automated
- When to use it
 - Both major and minor attributes
- ▷ Where to get it

Tshark example - DNS queries

\$ tshark -r thunt-lab.pcapng -T fields -e dns.qry.name udp.port==53 | head -10

6dde0175375169c68f.dnsc.r-1x.com 6dde0175375169c68f.dnsc.r-1x.com 0b320175375169c68f.dnsc.r-1x.com 0b320175375169c68f.dnsc.r-1x.com 344b0175375169c68f.dnsc.r-1x.com 344b0175375169c68f.dnsc.r-1x.com 0f370175375169c68f.dnsc.r-1x.com 0f370175375169c68f.dnsc.r-1x.com 251e0175375169c68f.dnsc.r-1x.com 251e0175375169c68f.dnsc.r-1x.com

Tshark example - user agents

\$ tshark -r sample.pcap -T fields -e http.user_agent tcp.

- dstport==80 | sort | uniq -c | sort -n | head -10
 - 2 Microsoft Office/16.0
 - 2 Valve/Steam HTTP Client 1.0 (client; windows; 10; 1551832902)
 - 3 Valve/Steam HTTP Client 1.0
 - 11 Microsoft BITS/7.5
 - 11 Windows-Update-Agent
 - 12 Microsoft-CryptoAPI/6.1
 - 104 PCU

Wireshark

- What's it good for?
 - Packet analysis with guardrails
 - Stream level summaries
- When to use it
 - As part of a manual analysis
 - When steps cannot be automated
- Where to get it

https://www.wireshark.org/

Useful when I have a target

	== 148.78.247.10				Expres	ssion
	Time	Source	Destination	Protocol	Length Info	
	98594 678 865093	148.78.247.10	12.33.247.4	TCP	78 26258 + 80 [SYN] Sec.0 Win-65	53
	98595 678.865219	12.33.247.4	148.78.247.10	TCP	78 80 → 26268 [SYN, ACK] Seq=0 A	ck
	98597 678.894523	148.78.247.10	12.33.247.4	TCP	70 26268 → 80 [ACK] Seq=1 Ack=1	
	98599 678.896451	148.78.247.10	12.33.247.4	HTTP	225 HEAD / HTTP/1.0 [ETHERNET FR	
	98600 678.896515	12.33.247.4	148.78.247.10	TCP	70 80 → 26268 [ACK] Seq=1 Ack=15	
	98601 678.899778	12.33.247.4	148.78.247.10	HTTP	211 HTTP/1.1 200 OK [ETHERNET FR	АМІ
	98602 678.899881	12.33.247.4	148.78.247.10	TCP	70 80 → 26268 [FIN, ACK] Seq=142	A
	98608 678.929234	148.78.247.10	12.33.247.4	TCP	70 [TCP Dup ACK 98597#1] 26268 →	8
	98609 678.933213	148.78.247.10		TCP	70 26268 → 80 [ACK] Seq=156 Ack=	14
	98610 678.933475	148.78.247.10	12.33.247.4	TCP	70 26268 → 80 [FIN, ACK] Seq=156	A
	98611 678.933517	12.33.247.4	148.78.247.10	TCP	70 80 → 26268 [ACK] Seq=143 Ack=	
	98716 679.708532	148.78.247.10		TCP	78 26460 → 80 [SYN] Seq=0 Win=65	53
						•
[S [T Se	estination Port: 80 Stream index: 648] CCP Segment Len: 0] equence number: 0 (r lext sequence number: 0 sknowledgment number: 0 10 = Header Lengt					
10						
10 F1	ags: 0x002 (SYN)	0 8b ea 20 ab 08 00 45	00 ··· }··P ····F·			
10 > F1 00	ags: 0x002 (SYN) 00 b0 d0 20 7d e3 00 5	0 8b ea 20 ab 08 00 45 16 04 14 94 4e f7 0a 00				
10 • F1 00 10	ags: 0x002 (SYN) 00 b0 d0 20 7d e3 00 5 00 3c f7 29 00 00 31 0		: 21 ·<·)··1· ···N···!			
10 F1 00 10 20	ags: 0x002 (SYN) 00 b0 d0 20 7d e3 00 5 00 3c f7 29 00 00 31 0 f7 04 66 9c 00 50 64 3	06 04 14 94 4e f7 0a 0d	: 21 ·<·)··1· ···N···! 02 ··f··Pd7 ·····			

Bro/Zeek

- Old name = Bro New name = Zeek
- What's it good for?
 - Near real time analysis
 - More storage friendly than pcaps
- ▷ When to use it
 - When you need to scale
 - When you know what attributes to review
- Where to get it

https://www.zeek.org/ sudo apt -y install zeek

Zeek example - cert check

\$ cat ssl* | zeek-cut id.orig_h id.resp_h id.resp_p validation_status | grep 'self signed' | sort | uniq 122.228.10.51 192.168.88.2 9943 self signed certificate in certificate chain 24.111.1.134 192.168.88.2 9943 self signed certificate in certificate chain 71.6.167.142 192.168.88.2 9943 self signed certificate in certificate chain

-d for human readable times

Zeek-cut prints epoch time by default
 "-d" converts to human readable

abroptop dabroptop boog	$con-src-test: \sim /foo\$ cat $conn.01\:00\:00-02$
	ts id.orig h head -8
1645578000.318671	
1645578000.318784	
1645578000.318841	167.172.154.151
1645578000.334906	167.172.154.151
1645578000.334948	167.172.154.151
1645578000.334977	167.172.154.151
1645578001.228742	167.172.154.151
1645578001.360749	167.172.154.151
cbrenton@cbrenton-beac	con-src-test:~/foo\$ cat conn.01\:00\:00-02\
	(-d ts id.orig h head -8
2022-02-23T01:00:00+00	167.172.154.151
2022-02-23T01:00:00+00	00 167.172.154.151
2022-02-23T01:00:00+00	167.172.154.151
2022-02-23T01:00:00+00	00 167.172.154.151
2022-02-23T01:00:00+00	00 167.172.154.151
2022-02-23T01:00:00+00	00 167.172.154.151
2022-02-23T01:00:01+00	00 167.172.154.151
2022-02-23T01:00:01+00	167.172.154.151
cbrenton@cbrenton-beac	con-src-test:~/foo\$

ngrep

- Pattern match on passing packets
- Like "grep" for network traffic
- Useful for quick checks
 - NIDS with signature better choice for long term
- Useful switches
 - o "-q" = Don't print "#" for non-matches
 - "-I" = Read a pcap file

https://github.com/jpr5/ngrep sudo apt install ngrep

Ngrep example

cbrenton@cbrenton-lab-testing:~/pcaps\$ ngrep -q -I odd.pcap Admin | head -15 input: odd.pcap match: Admin

T 148.78.247.10:26922 -> 12.33.247.4:80 [AP] GET /cfide/Administrator/startstop.html HTTP/1.0..Host: 12.33.247.4..User-Agent: Mozilla/5.0 [en] (Win 95; U)..Referer: http://12.33.247.4/..X-Forwarded-For: 148.64.147.168..Cache-Control: max-stale=0..Pra gma: no-cache.....Cv

T 12.33.247.4:80 -> 148.78.247.10:26922 [AP]

HTTP/1.1 404 Not Found..Date: Tue, 25 Jun 2002 00:34:58 GMT..Server: Apache..Connection: close..Conten t-Type: text/html; charset=iso-8859-1....<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">.<HTML><HEA D>.<TITLE>404 Not Found</TITLE>.</HEAD><BODY>.<H1>Not Found</H1>.The requested URL /cfide/Administrato r/startstop.html was not found on this server.<P>.</BODY></HTML>....

T 12.33.247.4:80 -> 148.78.247.10:26922 [AFP] cbrenton@cbrenton-lab-testing:~/pcaps\$

Datamash

What's it good for?

- Similar to the R-base tools, but more extensive
- Performing simple calculation on data
- When to use it
 - Performing calculations on multiple lines
 - Statistical analysis

Where to get it

https://www.gnu.org/software/datamash/ sudo apt install datamash

Datamash example

cbrenton@cbrent	con-lab-testing:	/lab3\$ cat conn.log zeek-cut
id.orig_h id.re	esp_h duration	sort -k3 -rn head -5
192.168.1.105	143.166.11.10	328.754946
192.168.1.104	63.245.221.11	41.884228 Duplicate IPs
192.168.1.104	63.245.221.11	31.428539 Duplicate IPS
192.168.1.105	143.166.11.10	27.606923
192.168.1.102	192.168.1.1	4.190865

cbrenton@cbrent	on-lab-testing:^	/lab3\$ cat conn.log zeek-cut
id.orig_h id.re	esp_h duration	grep -v -e '^\$' grep -v '-' sort
datamash -g 1,2	2 sum 3 sort -k3	8 -rn head -5
192.168.1.105	143.166.11.10	356.361869
192.168.1.104	63.245.221.11	73.312767
192.168.1.102	192.168.1.1	5.464553
192.168.1.103	192.168.1.1	4.956918
192.168.1.105	192.168.1.1	1.99374

RITA

- What's it good for?
 - Beacon & long conn at scale
 - Some secondary attributes
- When to use it
 - Can better organize Zeek data
 - Good when you are comfortable scripting
 - Will scale but can be time consuming
- Where to get it

https://github.com/activecm/rita

RITA example - beacons

cbrenton@cbrenton-lab-testing:~\$ rita show-beacons thunt-lab | head Score,Source IP,Destination IP,Connections,Avg. Bytes,Intvl Range,Size Range,Top Intv l,Top Size,Top Intvl Count,Top Size Count,Intvl Skew,Size Skew,Intvl Dispersion,Size Dispersion

1,10.55.100.111,165.227.216.194,20054,92,29,52,1,52,7774,20053,0,0,0 1,192.168.88.2,165.227.88.15,108858,199,860,230,1,89,53341,108319,0,0,0,0 0.838,10.55.200.10,205.251.194.64,210,308,29398,4,300,70,109,205,0,0,0,0 0.835,10.55.200.11,205.251.197.77,69,308,1197,4,300,70,38,68,0,0,0,0 0.834,10.55.100.111,34.239.169.214,34,1259,5,14388,1,156,15,30,0,0,0,0 0.834,192.168.88.2,13.107.5.2,27,198,2,33,12601,73,4,15,0,0,0,0 0.833,10.55.100.107,23.52.162.184,24,2397,43356,52,1800,467,18,18,0,0,0,0 0.833,10.55.100.107,23.52.161.212,24,5404,43235,52,1800,505,19,21,0,0,0,0 0.833,10.55.100.111,23.52.161.212,27,5379,37752,92,1800,505,17,20,0,0,0,0 cbrenton@cbrenton-lab-testing:~\$

Scale is 0 - 1 with 1.0 being a perfect beacon score

RITA example - C2 over DNS

thunt@thunt-one-day:~\$ rita show-exploded-dns test | head -10 Domain, Unique Subdomains, Times Looked Up cymru.com, 227, 502 hash.cymru.com,224,485 malware.hash.cymru.com,222,341 akadns.net,134,19282 edgekey.net, 116, 6342 akamaiedge.net, 116, 19680 microsoft.com, 91, 3116 amazonaws.com, 89, 6369 com.edgekey.net,83,5401 thunt@thunt-one-day:~\$

Passer

TC, 172.1.199.23, TCP 43, open, TC,172.16.199.23,TCP 55443,open, UC,172.16.199.23,UDP 626,open,serialnumberd/clientscanner likely nmap scan Warnings:scan UC,172.16.199.23,UDP 1194,open,openvpn/client Warnings:tunnel UC,172.16.199.23,UDP 3386,open,udp3386/client UC, 172.16.199.23, UDP 5632, open, pcanywherestat/clientscanner Warnings:scan UC,172.16.199.23,UDP 64738,open,shodan host/clientscanner abcdefgh Unlisted host Warnings:scan DN,2001:db8:1001:0000:0000:0000:0000:0015,AAAA,ns3.markmonitor.com., DN, fe80:0000:0000:189f:545b:7d4c:eeb8, PTR, Apple TV. device-info. tcp.local., model=J105aA

Beacon/Threat Simulator

- Permits you to test your C2 detection setup
- Target any TCP or UDP port
- Can jitter timing
- Can jitter payload size
- Not designed to exfiltrate data!

beacon-simulator.sh <target IP> 80 300 10 tcp 5000

Connect to TCP/80 on target IP every 300 seconds, +/-10 seconds, vary payload between 0-5,000 bytes

https://github.com/activecm/threat-tools

C2 Labs

What We Will Cover

- > This section is mostly hands on labs
- Implement what you have learned
- Lab format:
 - Given a problem
 - Use earlier content to help solve
 - Given hints
 - If you don't know where to start, try the hints
 - Given the exact commands
 - Solution
 - Complete walk through of the solution

Reminder

All lab files are on the VM

- No network access needed
- Unless you want to do third party research
- Can also be done from your host system browser

Login info

- Name = thunt
- Password = aybab2u
- Labs are in /home/thunt/lab*

Find long connections

- Files located in /home/thunt/lab1
- Provided with pcap and Zeek log files
- Identify
 - Top 10 longest connections between private and legal IP addresses (internal to external)
 - Top 10 cumulative communication time between private and legal IP addresses (internal to external)

Find long conns - Hints

- Long connections is a relative term. You need to know the length of time being audited.
- Pcaps don't store connection duration
- Zeek stores duration in conn.log
- Zeek-cut extracts fields from Zeek logs
- Datamash is useful for adding values

Useful commands to try

capinfos -aeu <pcap file>

cat conn.log | zeek-cut id.orig_h
id.resp_h duration | sort -k 3 -rn | head

cat conn.log | zeek-cut id.orig_h
id.resp_h duration | sort | grep -v -e
'^\$' | grep -v '-' | datamash -g 1,2 sum 3
| sort -k 3 -rn | head

Long conns - Answers

- Need to ID how long the pcap captured
- Use Zeek conn.log to easily get duration
- Need to extract:
 - Source IP (id.orig_h)
 - Destination IP (id.resp_h)
 - Duration of each connection (duration)
- Need to be able to:
 - Add up connection time between IP's
 - Present longest results first

less -S conn.log

<pre>#separator \x09</pre>					
<pre>#set_separator</pre>	,				
#empty_field	(empty)				
#unset_field					
#path	conn				
#open	2021-10-13-15-47-50				
#fields	ts	uid	(id.orig_h)	id.orig_p	id.resp_h
#types	time	string	addr	port	addr
1599652681.658987	Ci09jy2pQa8n4Nhpnk	192.168.125.105	43742	91.189.88.142	80
1599652681.909864	C7ebxg76JCvTenVC4	192.168.125.105	55418	91.189.91.38	80
1599652682.160692	Ciy54Bgp1AAP3g3Ai	192.168.125.105	56374	91.189.88.152	80
1599652682.411596	CIJ8Xh4WAfju0gEub6	192.168.125.105	36338	91.189.91.39	80

Identify time window being audited

thunt@thunt:~/lab1\$ capinfos -aeu trace1.pcap
File name: trace1.pcap
Capture duration: 86398.498096 seconds
First packet time: 2020-06-04 16:59:02.292525
Last packet time: 2020-06-05 16:59:00.790621
thunt@thunt:~/lab1\$

24 hours = 86,400 seconds

Plan B for files too large for capinfos:

tcpdump -tttt -n -r <filename> | awk 'NR==1; END{print}'

Longest unique connections

thunt@thunt:~/1	ab1\$ cat conn.lo	g <u> zeek-cut</u> id.orig h id.resp h duration sort -k 3 -rn head
192.168.99.51	167.71.97.235	86389.659357
192.168.99.51	104.248.234.238	243.768999
192.168.99.51	104.118.9.117	166.139547
192.168.99.51	72.21.91.29	134.888177
192.168.99.51	52.184.216.246	129.075227
192.168.99.51	52.167.249.196	128.957107
192.168.99.51	52.184.216.246	128.481757
192.168.99.51	13.107.5.88	128.346889
192.168.99.51	52.179.219.14	128.116421
192.168.99.51	13.107.5.88	128.042647
thunt@thunt:~/1	ab1\$	

Duration is just short of the full 86,398 second capture time

Longest cumulative time

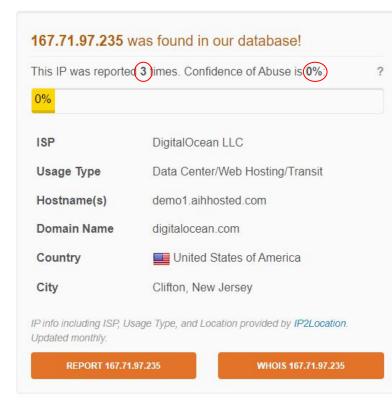
thunt@thunt:~/lab1\$ cat conn.log | zeek-cut id.orig h id.resp h duration | sort grep -v '-' | datamash -g 1,2 sum 3 | sort -k 3 -rn | head 192.168.99.51 167.71.97.235 86389.659357 192.168.99.51 52.179.219.14 4067.394413 192.168.99.51 52.184.217.56 2936.172839 192.168.99.51 52.184.216.246 2825.858 192.168.99.52 239.255.255.250 2507.626732 fe80::d048:42e0:8448:187c ff02::c 2434.977049 192.168.99.51 239.255.255.250 2374.546469 fe80::2126:bcd7:16f4:8cdb ff02::c 2368.234679 192.168.99.51 13.107.5.88 1317.047871 192.168.99.51 52.167.249.196 868.46966 thunt@thunt:~/lab1\$

> Note the first entry is still the same, but all others are new. IPv6 addresses have shifted info to the right.

Investigate the longest talkers

- Let's investigate the external IP of the two longest session
 - o **167.71.97.235**
 - o **52.179.219.14**
- We'll use three common research methods
 - Check the dns.log file
 - AbuseIPDB
 - <u>https://www.abuseipdb.com/</u>
 - ThreatCrowd
 - https://www.threatcrowd.org/

Investigate - hints


- You were given the two IP addresses to research
- The dns.log file shows all DNS queries and answers that were returned
- Use a browser to connect to the two research Websites and enter each IP

One out of two is not bad

thunt@thunt-labs:~/lab1\$ cat dns.log | zeek-cut query answers | sort | uniq |
grep 167.71.97.235
thunt@thunt-labs:~/lab1\$ cat dns.log | zeek-cut query answers | sort | uniq |
grep 52.179.219.14
array503.prod.do.dsp.mp.microsoft.com 52.179.219.14
thunt@thunt-labs:~/lab1\$

Second IP was contacted because system was trying to reach a microsoft.com host.

AbuseIPDB on first IP

AbuseIPDB data on 2nd IP

This IP was reporter	d 2 times. Confidence of Abuse is 0%:	?
ISP	Microsoft Corporation	
Usage Type	Data Center/Web Hosting/Transit	
Domain Name	microsoft.com	
Country	United States of America	
City	Boydton, Virginia	
IP info including ISP, U Updated monthly.	sage Type, and Location provided by IP2Location.	
REPORT 52.179	219.14 WHOIS 52.179.219.14	

ThreatCrowd data on first IP

IP > 167.71.97.235

Welcome! Right click nodes and scroll the mouse to navigate the graph.

More information on this IP is in AlienVault OTX

IS THIS MALICIOUS?

Yes No Most users have voted this as not malicious

IP WHOIS

Property	Value	
Location	New York, United States	
Country	United States	

REVERSE DNS

Domain	Date
demo1.aihhosted.com	2022-03-27
167.71.97.235	2022-01-11

Is aihhosted.com a business partner? When in doubt, check with purchasing

We could try to verify this entry with a host/dig/nslookup query but that will actively send them data

ThreatCrowd data on 2nd IP

IP WHOIS

Property	Value	
Location	Wilmington, United States	
Country	United States	

REVERSE DNS

Domain	Date
array503.prod.do.dsp.mp.microsoft.com	2022-04-11
orgeover-prod.do.dsp.mp.microsoft.com	2022-01-03
52.179.219.14	2021-10-12
array503-prod.do.dsp.mp.microsoft.com	2021-08-28
geo-prod.do.dsp.mp.microsoft.com	2021-03-16
dbk2gusuwcoxoqimsyhz2m3zfacameap.qw776iawpez267u dlbikkahi5yivxqkc.1.0.od6u6m3cwr	2021-02-05
etclpbjw6fdjpulrfarjm4vxsjkpxr46.kzfhjer7xzp7voaycava.1 .0.ozlnabtsgij2f5y455ywbx	2020-12-18
geo.prod.do.dsp.mp.microsoft.com	2020-12-18
geo-prod.dodsp.mp.microsoft.com.nsatc.net	2020-09-23
sbzurncdc4clwz5.eastus2.atlas.cloudapp.azure.com	2020-05-29
runnercitus-eastus2-a149423e- 0.postgres.database.azure.com	2020-05-16

Next lab

- We verified aihhosted is a business partner
- The 2nd IP (52.179.219.14) looks like Microsoft, but we want to verify
- Is there anything else in the data that can help with verification?
- Start with conn.log
 - Move to any applicable application logs

Hints

- We want to further verify 52.179.219.14
- Search conn.log for this IP address
- Is the "service" recognized?
- Check for a log file with that service name
- Search that log for the above IP
- Any helpful digital verification?

Looks like it's SSL/TLS traffic

thunt@thunt-lab	s:~/lab1	\$ grep 52	2.179.219	9.14 con	n.log ł	nead -5			
1591290650.4638	48	Ce8vuV9	pdZN1TTE2	21	192.168	.99.51	52863	52.179.	219.14
443 tcp	ssl	65.3893	72	1270	3035	SF	_		0
ShADadFf	14	1842	12	3527	-				
1591292050.4591	24	CbnymM80	GhENDKN6	51	192.168	.99.51	52938	52.179.	219.14
443 tcp	ssl	95.40642	23	1270	3036	SF	_	—	0
ShADdaFf	14	1842	12	3528					
1591293617.5748	16	CdOPg52	V3t5AGGk	jyf	192.168	.99.51	52999	52.179.	219.14
443 tcp	ssl	68.28012	22	1270	3036	SF	_	_	0
ShADdaFf	14	1842	11	3488	-				
1591295064.9559	93	CKXOFb4]	bJ1gZgX3:	sW2	192.168	.99.51	53150	52.179.	219.14
443 tcp	ssl	128.116	421	1269	3036	RSTR	-	-	0
ShADdar 12	1761	11	3488	-					
1591295092.0987	34	CjkEjk4n	m4GL1LSM	JMd	192.168	.99.51	53153	52.179.	219.14
443 tcp	ssl	113.248	030	1246	3036	SF	_		0
ShADdaFf	14	1818	11	3488					
thunt@thunt-lab	s:~/lab1	\$ 							

Entry in ssl.log

thunt@thunt-labs:~/lab1\$ grep 52.179.219.14 ssl.log | head -2 52863 52.179.219.14 1591290650.502177 Ce8vuV9pdZN1TTE21 192.168.99.51 TLSv12 TLS ECDHE ECDSA WITH AES 256 GCM SHA384 x25519 array503.prod.do.dsp. 443 h2 T mp.microsoft.com F – Fd3zBI3gZR5omLoAi7,FWU71E32do A3ZMCOH (empty) CN=*.prod.do.dsp.mp.microsoft.com,OU=DSP,O=Microsoft,L=Redmond,ST=WA, CN=Microsoft ECC Content Distribution Secure Server CA 2.1,0=Microsoft Corpor C=US ation, L=Redmond, ST=Washington, C=US 1591292050.498723 CbnymM8GhENDKN6ol 192.168.99.51 52938 52.179.219.14 TLSv12 TLS ECDHE ECDSA WITH AES 256 GCM SHA384 x25519 array503.prod.do.dsp. 443 F – h2 T mp.microsoft.com Fle59121NCCmoWeZnf, FMXEB01sio EzUSPeza (empty) CN=*.prod.do.dsp.mp.microsoft.com,OU=DSP,O=Microsoft,L=Redmon CN=Microsoft ECC Content Distribution Secure Server CA 2.1, O=Microsof d,ST=WA,C=US t Corporation, L=Redmond, ST=Washington, C=US thunt@thunt-labs:~/lab1\$

What have we learned?

- Connection was SSL/TLS
- Server had a digital certificate
- > The server_name matches the DNS query
- Only thing left would be to check that the cert is valid
 - Zeek can do this automatically
 - We have that feature turned off for these labs
 - Assume the cert is valid

Answers

- Longest connection appears to be business partner related
- Second longest is is used in keeping
 Windows 10 updated
- Neither appear to be malware related

Let's look for beacons

- Beacons are hard to detect!
- Neither pcaps or Zeek logs record dwell time between connections
- Using connect quantity misses low & slow
- ▷ Using session size also problematic
- RITA to the rescue!
- We've already imported data into RITA

RITA online help

thunt@thunt-labs:~\$ rita | less NAME: rita - Look for evil needles in big haystacks.

USAGE:

rita [global options] command [command options] [arguments...]

VERSION:

v4.3.1

COMMANDS:

delete, delete-databaseDelete imported database(s)importImport zeek logs into a target databasehtml-reportCreate an html report for an analyzed databaseshow-beacons-fqdnPrint hosts which show signs of C2 software (FQDN Analysis)show-beacons-proxyPrint hosts which show signs of C2 software (internal -> Proxy)show-beaconsPrint hosts which show signs of C2 software

List imported data

thunt@thunt-labs:~\$ rita list lab1 lab2 lab3 thunt@thunt-labs:~\$

Syntax = rita <command> <dbase>

thunt@thunt-labs:~\$ rita show-long-connections lab1 | head Source IP, Destination IP, Port: Protocol: Service, Duration, State 192.168.99.51,167.71.97.235,9200:tcp:-,86389.7,closed 192.168.99.51,104.248.234.238,80:tcp:http,243.769,closed 192.168.99.51,104.118.9.117,443:tcp:ssl,166.14,closed 192.168.99.51,72.21.91.29,80:tcp:- 80:tcp:http,134.888,closed 192.168.99.51,52.184.216.246,443:tcp:ssl,129.075,closed 192.168.99.51,52.167.249.196,443:tcp:ssl,128.957,closed 192.168.99.51,13.107.5.88,443:tcp:ssl,128.347,closed 192.168.99.51,52.179.219.14,443:tcp:ssl,128.117,closed 192.168.99.51,52.184.217.56,443:tcp:ssl,126.653,closed thunt@thunt-labs:~\$

Lab time!

- Using RITA, identify potential beacons
- ▷ We are still working with "lab1"
- Consider any session scoring .8 or higher worthy of deeper analysis

Hints

- RITA is the best tool for beacon detection
- Remember the syntax:
 - o rita <command> <database>
- Finding RITA's beacon commands

thunt@thunt-labs:~\$ rita	grep beacons					
show-beacons-fqdn	Print hosts	which sh	low signs	of C2	software	(FQDN Analysis)
show-beacons-proxy	Print hosts	which sh	low signs	of C2	software	(internal -> Proxy)
show-beacons	Print hosts	which sh	low signs	of C2	software	
thunt@thunt-labs:~\$						

Commands

rita show-beacons-fqdn lab1
rita show-beacons-proxy lab1
rita show-beacons-fqdn lab1

Answers - FQDN beacons

rita show-beacons-fqdn lab1 -H | less -S

+	SOURCE IP	FQDN	+ CONNECTIONS	++- AVG BYTES
0.624	192.168.99.51	tile-service.weather.microsoft.com	48	5436
0.585	192.168.99.51	array509.prod.do.dsp.mp.microsoft.com	30	5258
0.548	192.168.99.51	kv501.prod.do.dsp.mp.microsoft.com	44	7560
0.535	192.168.99.51	geover.prod.do.dsp.mp.microsoft.com	40	7857
0.51	192.168.99.51	disc501.prod.do.dsp.mp.microsoft.com	52	8088
0.487	192.168.99.51	array506.prod.do.dsp.mp.microsoft.com	25	5244
	192.168.99.51	cp501.prod.do.dsp.mp.microsoft.com	50	8058
0.391	192.168.99.51	ctldl.windowsupdate.com	28	834412
0.373	192.168.99.51	array503.prod.do.dsp.mp.microsoft.com	38	5279
	192.168.99.51	settings-win.data.microsoft.com	50	5959

All score < .8 so no further investigation needed

Answers - no proxy traffic found

thunt@thunt-labs:~\$ rita show-beacons-proxy lab1 -H No results were found for lab1

Answers - IP beacons

rita show-beacons lab1 -H | less -S

+ SCORE SOURCE IP	-+ DESTINATION IP	CONNECTIONS	+ AVG BYTES	+ INTVL RANGE	++- SIZE RANGE
+	52.184.217.56 23.197.120.174	+	245 5258 7857	11 7741 2687 16	
0.526 192.168.99.51 0.487 192.168.99.51 0.373 192.168.99.51 0.319 192.168.99.51	52.184.216.246 52.179.219.14	297 25 38 47	231 5244 5279 5976	13031 3562	39 122 162 1331

Two entries scoring .8 or higher

Is there a way to visualize beacons?

thunt@thunt-labs:~/lab1\$ beacon-data 192.168.99.51 104.248.234.238
00 126
01 125
02 126
03 126
04 126
05 126
06 126
07 126
08 126
09 125
10 127
11 126
12 125
13 126
14 125
15 126
16 126
17 126
18 126
19 118
20 126
21 125
22 126
23 125

We cover these types of techniques in the Advanced Threat Hunting class

Answers - Final

- Two IPs are worth investigating
 - 0 104.248.234.238
 - o **52.179.224.121**

Payload analysis with ngrep

- We found a suspicious IP pair
 192.168.99.51 to 104.248.234.238
- Let's analyze the payloads in these sessions
- Multiple tools can help here
 - But ngrep easily focuses on payload
- Use "host" parameter to focus in on the above IPs

Payload analysis - hints

- Ngrep is normally used to search for patterns within the payload of all packets
- ▷ You can use BP filters to:
 - Focus on specific IP addresses
 - Focus on specific ports
 - "host" focuses on specific IP addresses
- Helpful switches
 - "-q" = Don't print "#" for packets that don't match
 - "-I" (capital letter i) = Read from pcap file

Useful commands to try

ngrep -q -I tracel.pcap host 192.168.99.51 and host 104.248.234.238 | less

Things that make you go "humm"

thunt@thunt:~/lab1\$ ngrep -q -I trace1.pcap host 192.168.99.51 and host 104.248.23
4.238 | head -20
input: trace1.pcap
filter: (host 192.168.99.51 and host 104.248.234.238) and ((ip || ip6) || (vlan
&& (ip || ip6)))

T 192.168.99.51:52833 -> 104.248.234.238:80 [AP] #4
GET /rmvk30g/eghmbblnphlaefbmmnoenohhoncmcepapefjjekpleokhjfjmnmijghedkienpli
dbbcmgdjldbegpeemiboacnfcpnbnnhlmjbpcejfpecdioiddklfegefcjbcnagjclnoijpajlpkk
egakmpdddojnlphegeehaacmofggdfkagpbighfkndllaamndepdanhnogedkaodhgakiigohemin
oolnaobdiiokpebghapnghbebkepiffooljden;1;4;1 HTTP/1.1..Accept: text/html, ima
ge/gif, image/jpeg, *; q=.2, */*; q=.2..Connection: keep-alive..User-Agent: M
ozilla/4.0 (Windows 7 6.1) Java/1.7.0_11..Host: 104.248.234.238..Cache-Contro
1: no-cache....

T 104.248.234.238:80 -> 192.168.99.51:52833 [A] #5

• • • • • •

T 104.248.234.238:80 -> 192.168.99.51:52833 [AP] #6
HTTP/1.1 200 OK.Date: Thu, 4 Jun 2020 16:59:22 GMT.Server: Apache/2.2.15 (C
entOS).X-Powered-By: PHP/5.3.27..Content-Type: application/octet-stream.Con
nection: close..Content-Length: 0....

User agent string analysis

- Is it normal for the source IP to ID as a Windows 7 system?
- Let's find out together
- Run this command:

cat http.log | zeek-cut id.orig_h id.resp_h user_agent | grep
192.168.99.51 | sort | uniq | cut -f 3 | sort | uniq -c | sort -rn

What you should see

thunt@thunt-labs:~/labl\$ cat http.log | zeek-cut id.orig_h id.resp_h user_agent | grep 192.168.99.
51 | sort | uniq | cut -f 3 | sort | uniq -c | sort -rn
29 Microsoft-WNS/10.0
16 Microsoft-Delivery-Optimization/10.0
8 Microsoft-CryptoAPI/10.0
1 WicaAgent
1 Mozilla/4.0 (Windows 7 6.1) Java/1.7.0 11

Source IP normally identifies as Windows 10 Beacon session is the only time it claims to be Windows 7

What data are we sending?

- Is the URI in the ngrep output sent consistently?
- ▷ We could eyeball it, but...
- Zeek stores this type of data
 - \circ It's in the http.log file
- Let's use this log to identify all of the URI's requested from this external host

URI request - hints

- Zeek-cut is your friend
- We should extract
 - Source IP
 - Destination IP
 - The "uri" string
- ▷ Grep can focus on the traffic we care about
- Remember the threat hunter's mantra
 - sort | uniq | sort

Useful commands to try

cat http.log | zeek-cut id.orig_h id.resp_h uri | grep 104.248.234.238 | sort | uniq -c | sort -rn

Single minded request

Answers

- ▷ 3,011 connections to external host
- Always sending the same odd "GET" request
- HTTP header data looks forged
- ▷ This really looks like a C2 channel
- Google search for "rmvk30g"
 Looks like Fiesta EK malware

https://www.malware-traffic-analysis.net/2014/04/05/index.html

Lab - Look for C2 over DNS

- Check to see if C2 over DNS is in play
- Consider any domain with more than 1,000
 FQDNs in it suspect
 - Not interested in total quantity of queries
 - Interest in quantities of unique FQDNs

Hints

- > Type "rita" to show a list of commands
- Look for any that seem "dns" related
- RITA labels "unique queries" as "Unique Subdomains"

Commands

rita show-exploded-dns lab1 -H | head -20

Answers

<pre>thunt@thunt-labs:~/lab1\$ rita show-exploded-dns lab1 +</pre>		
DOMAIN	INS	TIMES LOOKED UP
microsoft.com	24	226
+	 14	117
dsp.mp.microsoft.com	 9	++
do.dsp.mp.microsoft.com	8	
<pre>prod.do.dsp.mp.microsoft.com</pre>	8	107
<pre>/ delivery.mp.microsoft.com /</pre>	4	6
dl.delivery.mp.microsoft.com	3	3
live.com	2	
<pre>/ update.microsoft.com thunt@thunt-labs:~/lab1\$ _</pre>	 2	9

Noting of note Unique queries are well under 1,000

Let's move to lab2

Let's check the data in the lab2 directory
 Ww will also use "lab2" database in RITA

Next lab

- Working with data in the lab2 directory
- Let's repeat our check for C2 over DNS
- Effectively the same commands as we used in the last lab
- Pipe through "less -S" instead of "head" if lines of data are really long

Commands

rita show-exploded-dns lab2 -H | less -S

Answers - You should see

+DOMAIN	+ UNIQUE SUBDOM
honestimnotevil.com	
/ 5da0b7f90908be408ac43eb80a.honestimnotevil.com	
<pre> 8806d9a9068226a33b26e65071a0d496c751246292ec22b36bb5761c2762.5da0b7f90908be408ac 43eb80a.honestimnotevil.com</pre>	+
60a5291b4324545e080e62a0ea.honestimnotevil.com	+
6a22df8dcd8e5032f95c2406362b70ddc5843efe182166d82ecf895312d7.60a5291b4324545e080 e62a0ea.honestimnotevil.com	
<pre> 8810f36b0b8e785c93544806d213e9c249d806a1b09b25b0bbdba6a4d016.a62e1536e8f6f362509 c462faa.honestimnotevil.com</pre>	
<pre> 71b3a90c8ae03782a44b552c8162238aed61cea42db89d05185f96cb2cc0.c3d37e9c6fc2384d237 9ff9f16.honestimnotevil.com </pre>	+
<pre></pre>	
<pre>+</pre>	+======= +=========

Navigate up/down/left/right using arrow keys

Answers - data output

thunt@thunt-labs:~/lab2\$ rita show-exploded-dns lab2 | head Domain,Unique Subdomains,Times Looked Up honestimnotevil.com,2074)2074 5da0b7f90908be408ac43eb80a.honestimnotevil.com,21,21 8806d9a9068226a33b26e65071a0d496c751246292ec22b36bb5761c2762.5da0b7f90908be408ac43eb80a.honestimno tevil.com,21,21 60a5291b4324545e080e62a0ea.honestimnotevil.com,7,7 6a22df8dcd8e5032f95c2406362b70ddc5843efe182166d82ecf895312d7.60a5291b4324545e080e62a0ea.honestimno tevil.com,7,7 8810f36b0b8e785c93544806d213e9c249d806a1b09b25b0bbdba6a4d016.a62e1536e8f6f362509c462faa.honestimno tevil.com,4,4 71b3a90c8ae03782a44b552c8162238aed61cea42db89d05185f96cb2cc0.c3d37e9c6fc2384d2379ff9f16.honestimno tevil.com,4,4 c3d37e9c6fc2384d2379ff9f16.honestimnotevil.com,4,4 a62e1536e8f6f362509c462faa.honestimnotevil.com,4,4

Greater than 1,000 unique queries!

Answers

- We looked up 2,074 FQDNs within honestimnoteveil.com
- This extremely high for a domain we do not recognize
- Could very well indicate C2 over DNS

C2 over DNS only TXT queries?

thunt@thunt:~/lab2\$ cat dns.log | zeek-cut qtype_name query | grep honestimnotevil | cut -f 1 | sort | uniq -c | sort -rn 707 MX 692 TXT 675 CNAME thunt@thunt:~/lab2\$

707 + 692 + 675 = 2,074 (same as number of FQDNs found in first lab)

What's with the odd FQDNs?

thunt@thunt-labs:~/lab2\$ cat dns.log | zeek-cut guery | head 79f50108263fa9226548080043dbf9bba0.honestimnotevil.com 58cc010826f99c2b2f7167004499f9c8af.honestimnotevil.com 3d06010826a90a57036d2100456f759c3a.honestimnotevil.com 36570108260701918be7af0046fee50649.honestimnotevil.com 5c73010826f935d832b7620047712fe0a4.honestimnotevil.com c4b30108267ad7b7c8931e00482fb1ae06.honestimnotevil.com c244010826dc5cff732c1000495c204bd8.honestimnotevil.com c94f010826e6597c4bfd7e004b46fbe42d.honestimnotevil.com 082a0108260d28f9002dea004c12ca08a3.honestimnotevil.com 5f120108261bca94ef3860004ad631a265.honestimnotevil.com thunt@thunt-labs:~/lab2\$

We cover decoding this C2 channel in the Packet Decoding class

Next lab!

- Working with the lab2 data, check for:
 - Beacons
 - Long connections
- Anything of note?

Hints

- Each of these was covered when investigating the lab1 data
- Refer back and repeat the commands as needed to investigate each

Commands

rita show-beacons-fqdn lab2 rita show-beacons-proxy lab2 rita show-beacons-fqdn lab2

rita show-long-connections lab2

cat conn.log | zeek-cut id.orig_h id.resp_h duration | sort | grep -v -e '^\$' | grep -v '-' | datamash -g 1,2 sum 3 | sort -k 3 -rn | head

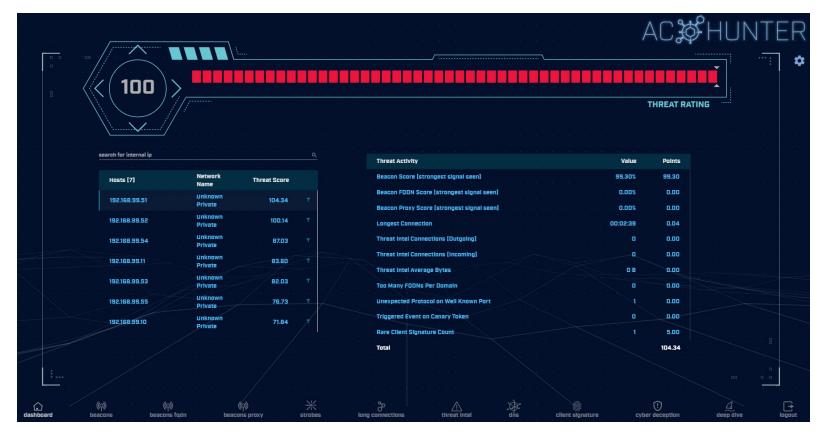
Answers - No beacons found

thunt@thunt-labs:~/lab2\$ rita show-beacons-fqdn lab2 No results were found for lab2 thunt@thunt-labs:~/lab2\$ rita show-beacons-proxy lab2 No results were found for lab2 thunt@thunt-labs:~/lab2\$ rita show-beacons lab2 No results were found for lab2 thunt@thunt-labs:~/lab2\$

Answers - No long conns of note

thunt@thunt-labs:~/lab2\$ rita show-long-connections lab2 No results were found for lab2 thunt@thunt-labs:~/lab2\$ thunt@thunt-labs:~/lab2\$ cat conn.log | zeek-cut id.orig_h id.resp_h duration | sort | grep -v -e '^\$' | grep -v '-' | datamash -g 1,2 sum 3 | sort -k 3 -rn | head 172.31.26.157 172.31.0.2 1134.198964 thunt@thunt-labs:~/lab2\$

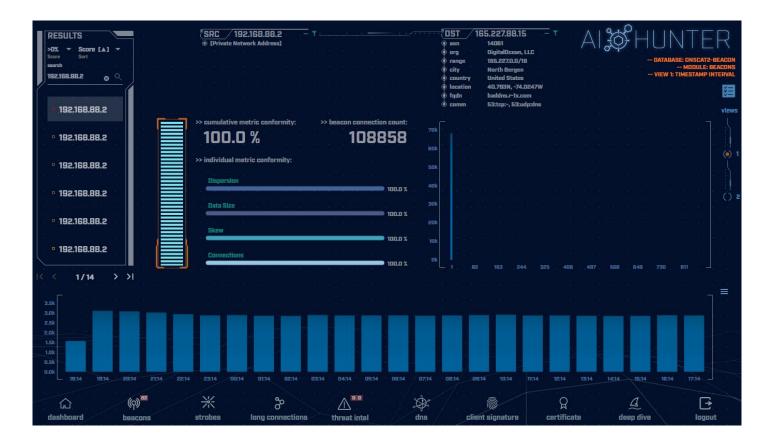
Answers - Final


- Lab1 data has a C2 beacon
- Lab2 data has C2 over DNS
- All other data looks clear

What have we learned?

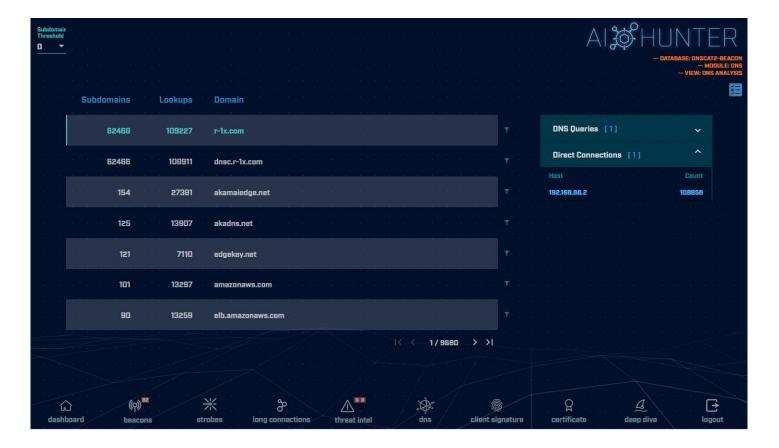
- RITA provides a consistent interface for identifying C2
- Screens pull in additional helpful info
- Even very slow beacons can be detected
- Investigation can be scripted
- Open source, so anyone can use it for free

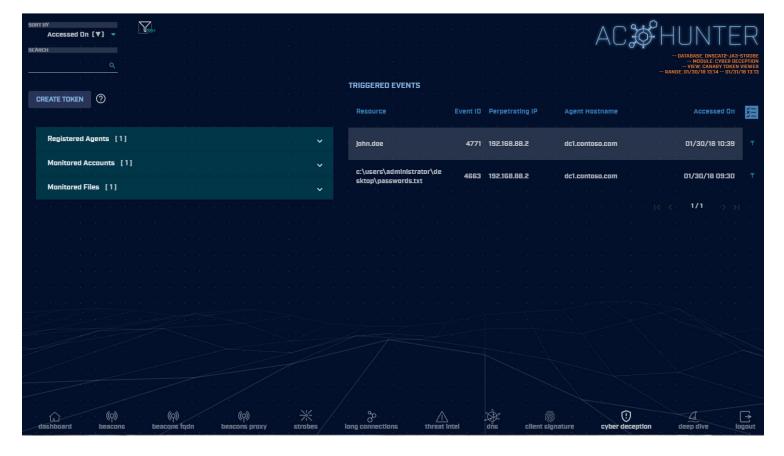
Quick demo


- Similar data, seen through Al-Hunter
- Inexpensive commercial solution
- Automates much of the hunting process

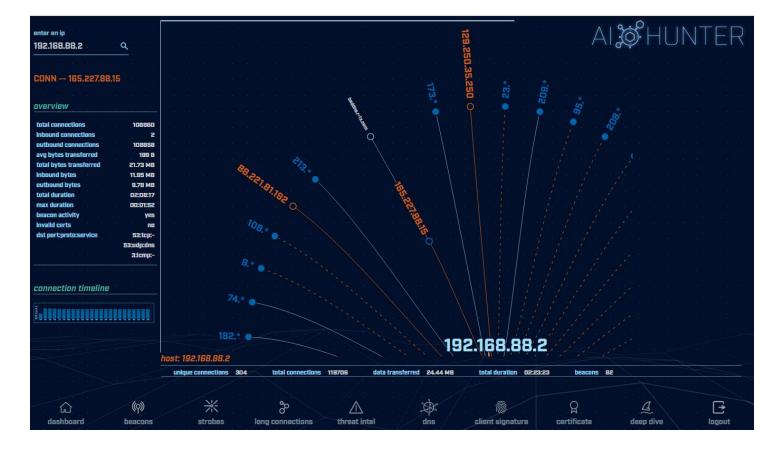
24 active hunts of 24-hours of data every single day Top results scored, alerts sent to SIEM

SORT BY	5 hrs ,→	Private Metwork Add O IPrivate Metwork Add O i network name	Ultiknown Private		range 111.221 city Centra country Hangy location 22.230 ourrid fighn [no ret historic fighn [no ret comm 443:00	SDFT-CDRP: 129.0/24 kirCW Cong BBN, 114.1_ sults] pr-		
	Src 10.55.100.107	Src Network Name Unknown Private	Dst 111.221.29.113	Dst Network Name Public	Port:Protocol:Service 443:tcp:-	Closed	Longest Duration 23:57:00	T
	10.55.100.110	Unknown Private	40.77.229.82	Public	443:tcp:-	closed	23;56:00	0 0 0 0 1 0 ▼ 0 ↓
	10.55.100.103	Unknown Private	131.253.34.243	Public	443:tcp:-	closed	17:58:18	.T ([•]) ₂
	10.55.100.111	Unknown Private	111.221.29.114	Public	443:tcp:-	closed	12:57:19	а т на на
	10.55.100.108	Unknown Private	65.52.108.220	Public	443:tcp:-	closed	12:23:35	
ia la	10.55.100.106	Unknown Private	65.52.108.232	Public	443:tcp:-	closed	06:59:45	* *
dashboa	(ợ) ard beacons	(cp) beacons fqdn be	(例) · · · · · · · · · · · · · · · · · · ·	کم long connections	threat Intel	client signature cyber de		→ logout


Long connections with lots of intel View both individual and cumulative


Clear beacon analysis By both timing and session size

Resources to dig deeper


	Ľ	IST.	<u> </u>	13.20	27.88	.ເວ	deep dive
	φ	asn		140	361		AbuseIPDB
	Φ	org		Dig	ItalOce	an, LLC	
	φ	range		165	<u>5.227.0</u>	.0/16	AlienVault
	φ	city		No	rth Ber	gen	apility.io
	•	country		Uni	ited Sta	ites	ThreatCrowd
	φ	location		40.	.793N,	-74.024	7W
	•	fqdn		bac	ddns.r-	1x.com	Shodan
	٢	comm		53:	:tcp:-, 5	i3:udp:c	Google
							Google DNS
70k							VirusTotal
							SecurityTrails
60k						100	

C2 over DNS analysis

Cyber Deception/Honey Tokens Lateral movement detection with very low false positive rate

Deep dive analysis

Take home lab

- This is a bonus lab to do on your own
 - Wait at least a week
 - Will help identify what training "stuck"
- Move to the "lab3" directory
- ▷ Check for C2/DNS, long conns & beacons
- Investigate any suspect external IP's
- Do you see anything of concern?
- Hints and answers after "Wrap Up" slide

Keep honing your skills

- Check out our blog
- "Malware of the day"
 - \circ Skip to the bottom
 - Grab the pcap
 - Find the C2 channel
 - Go back and read the blog to check your work
- Subscribe to get notifications

https://www.activecountermeasures.com/subscribe/

Other courses I'm teaching

Advanced Network Threat Hunting
 Shooting for Sept - Oct
 \$495

https://www.antisyphontraining.com/advanced-network-threat-hunting-w-chris-brenton/

Getting Started with Packet Decoding

 July 12 - 15
 Pay what you can - \$30+

https://www.antisyphontraining.com/event/getting-started-with-packet-decoding-w-chris-brenton/

Wrap Up

- > Thanks for attending!
- Very special thank you to the folks behind the scenes
 - They give up their free time to help us all out
- Content feedback?
 - Please email: chris@activecountermeasures.com

Take home lab

- Move to the "lab3" directory
- Check for:
 - Beacons (all types)
 - Long connections
 - C2 over DNS
- Investigate any suspect external IP's
- Do you see anything of concern?

Hints for the take home lab

- Repeat what we did with lab1 & lab2
- Us "up arrow" key to scroll through command buffer to see commands you ran previously
- ▷ You've got this! :-)

Useful commands to try (1 of 2) cat conn.log | zeek-cut id.orig_h id.resp_h duration | sort -k 3 -rn | head

cat conn.log | zeek-cut id.orig_h id.resp_h
duration | sort | grep -v -e '^\$' | grep -v '-'
| datamash -g 1,2 sum 3 | sort -k 3 -rn | head

cat conn.log | zeek-cut id.orig_h id.resp_h |
sort | uniq -c | sort -rn | head

host <IP address to investigate>

Useful commands to try (2/2)

rita show-databases rita show-long-connections lab3 | head

rita show-long-connections lab3 | cut -d , -f 1,2,4 | sort | datamash -H -t , -g 1,2 sum 3 | sort -t , -k 3 -rn | head

rita show-beacons lab1 | head

rita show-exploded-dns lab1 | head

Answers - Long connections

thunt@thunt:~/lab3\$	cat conn.log	zeek-cut id.orid	g h id.resp h	duration	sort -k
			,		

3 -rn | head 192.168.99.52 167.71.97.235 86387.734233 192.168.99.52 162.250.5.77 86347.153666 192.168.99.52 52.117.209.74 9868.617938 192.168.99.52 162.250.2.168 6735.118200 192.168.99.52 52.184.217.56 129.924272 192.168.99.52 52.184.212.181 129.754188 192.168.99.52 52.184.213.21 129.130822 192.168.99.52 52.184.212.181 129.123714 192.168.99.52 52.167.17.97 129.057349 192.168.99.52 52.167.17.97 128.896376 thunt@thunt:~/lab3\$

Answers - Cumulative comm time

thunt@thunt:~/1	ab3\$ cat conn.log	g zeek-cut id.orig h id.resp h duration sort
grep -v -e '^\$'	grep -v '-'	datamash -g 1,2 sum 3 sort -k 3 -rn head
192.168.99.52	167.71.97.235	86387.734233
192.168.99.52	162.250.5.77	86347.153666
192.168.99.52	52.117.209.74	9868.617938
192.168.99.52	52.184.217.56	7065.516309
192.168.99.52	52.184.213.21	7056.53546
192.168.99.52	162.250.2.168	6735.1182
192.168.99.52	52.184.212.181	6646.856637
192.168.99.52	239.255.255.250	2294.038962
fe80::d048:42e0	:8448:187c	ff02::c 2281.05815
fe80::2126:bcd7	:16f4:8cdb	ff02::c 2242.310744
thunt@thunt:~/1	ab3\$	

Same two top IPs

Answers - Beacons

thunt@thunt:~/lab3\$ cat conn.log | zeek-cut id.orig_h id.resp_h | sort | uniq -c | sort -rn | head 339 192 168 99 52 224 0 0 251

222	192.100.99.JZ Z	24.0.0.ZJI	
319	192.168.99.52 2	08.67.222.222	
288	fe80::fd16:6e8:11	8e:81cd	ff02::fk
288	fe80::fd16:6e8:11	8e:81cd	ff02::16
288	fe80::d048:42e0:8	448:187c	ff02::fk
288	fe80::d048:42e0:8	448:187c	ff02::16
288	fe80::b8d7:3773:a	b6e:7fc9	ff02::fk
288	fe80::b8d7:3773:a	b6e : 7fc9	ff02::16
288	fe80::5d7e:4fb3:8	fbc:d59	ff02::fk
288	fe80::5d7e:4fb3:8	fbc:d59	ff02::16
untath	unt:~/lab3\$		

Nothing of note

thunt@thunt:~/lab1\$ rita show-long-connections lab3 | head -5 Source IP, Destination IP, Port: Protocol: Service, Duration 192.168.99.52,167.71.97.235,9200:tcp:-,86387.7 192.168.99.52,162.250.5.77,5938:tcp:-,86347.2 192.168.99.52,52.117.209.74,5938:tcp:-,9868.62 192.168.99.52,162.250.2.168,5938:tcp:-,6735.12 thunt@thunt:~/lab1\$ rita show-beacons lab3 | head -5 Score, Source IP, Destination IP, Connections, Avg. Bytes, Intvl Range, Size Range, Top I ntvl, Top Size, Top Intvl Count, Top Size Count, Intvl Skew, Size Skew, Intvl Dispersion ,Size Dispersion 0.835,192.168.99.52,52.230.222.68,59,546,31350,2696,840,181,46,48,0,0,0,0 0.834,192.168.99.52,52.242.211.89,21,826,1651,2696,1680,181,14,11,0,0,0,0 0.833,192.168.99.52,104.71.255.238,24,5429,21721,40,1800,505,16,22,0,0,0,0 0.658,192.168.99.52,52.184.213.21,65,5392,2199,120,900,1883,28,33,0.99757,0,1,0 thunt@thunt:~/lab1\$ rita show-exploded-dns lab3 | head -5 Domain, Unique Subdomains, Times Looked Up microsoft.com, 10, 237 teamviewer.com, 6, 36 mp.microsoft.com, 5, 111 8.e.f.ip6.arpa,4,20 thunt@thunt:~/lab1\$

Answers - Investigate IPs

thunt@thunt:~/lab3\$ host 167.71.97.235
235.97.71.167.in-addr.arpa domain name pointer demo1.aihhosted.com.
thunt@thunt:~/lab3\$ host 162.250.5.77
77.5.250.162.in-addr.arpa domain name pointer US-NJC-ANX-R010.teamviewer.com.
thunt@thunt:~/lab3\$ __

Business need?

Answers - Final

- Two long connections found
- Unlikely (but not impossible) we have any beacons
- ▷ For the two long connections
 - First was discussed earlier (business partner)
 - The second is TeamViewer
- Is there a business need to run TeamViewer on this system?