
Fireside Fridays
Anatomy of a VPN

Part 1 of 3

Thanks to our sponsors!

2

Antisyphon Training

Lab requirements for this section
● Download a totally safe file:

● Then open the archive

● You'll find two image files

3

wget https://random-class.s3.us-east-1.amazonaws.com/vpn-lab1.tar.gz

tar xvzf vpn-lab1.tar.gz

cd hashing
ls -al

Anatomy of a VPN
● All VPNs should include:

○ Initial authentication
○ Set up a secure channel over an insecure medium
○ Privacy for all passing data
○ Method of authenticating every packet in the session

● SSH, TLS, IPSec, etc. provide the above

● We'll cover each of these once we know the basics

4

Quick side trip regarding crypto
● Encryption

● Hashing

5

A method of converting plaintext into an alternate format,
called ciphertext, that is easy for select individuals but hard
for everyone else to convert back into plaintext.

A method of converting plaintext into an alternate format,
called a hash, that should be difficult if not impossible for
anyone to return to the original plaintext.

Symmetrical key encryption
● Simplest and most frequently used encryption

● Provides only data privacy

● Same key encrypts as well as decrypts

● Relatively low CPU hit

● Chicken/Egg problem
○ Don't trust the medium so I want to encrypt the data
○ How do I protect the key in transit?
○ I could encrypt it, but that requires another key 6

Encryption vulnerabilities
● Key size is too small

○ DES is a great example

● Flaw in encryption algorithm
○ Every firewall vendor that thought they were smart enough to

create their own VPN crypto without outside scrutiny

● Key is compromised in transit
● Key is not changed frequently enough

7

Hashing
● Process to convert data to an alternate format

○ Usually, but not always, a fixed length string

● Usually works for any data format, of any size

● One way algorithm, cannot reverse to plaintext

● Same data will always generate the same hash

● Slight changes to the data will result in a drastically
different hash value

8

Where do we use hashes?
● Passwords

○ Avoids clear text storage
○ Should include a random seed

● File downloads
○ If the hash matches, you got the right file

● Network packets
○ CRC check is effectively a hash of the frame data

9

The purpose of a random seed
● Hashing is repeatable

○ Same value will always create the same hash
○ This is usually a feature

● Problematic with password hashes
○ 10 people with the same hash have the same password
○ Crack 1 and you know you own them all

● Random seed is semi-random info added to password
before hashing
○ Doesn't add strength, just makes the final hash look different

when password is the same 10

Linux shadow file

11

cbrenton:6FT5Lri8Q$ilvO0OEtDzBnFzuz5/zL7cUD3RUOwc2rgr1YPH4egJYGgx5P
9bnZBE1dLOwRngPzeKlEorrWJM9c8OBE8ABXU0:18939:0:99999:7:::

mongodb:*:19261:0:99999:7:::

jstrand:6lpHfNRyl$TJhfz7fLo0f6rT7xnSC3R42QqxDueR83r8qUZYwfTAJ.7PRhR
Hip5KpBhJ1rjCgB2jMRU0px85XecemO0MqiY1:19370:0:99999:7:::

Account name

Hash algorithm
used (6=SHA512)

Random seed Password hash

Locked account

Hash collisions
● Most hash algorithms:

○ Take variable size input, sometimes unlimited
○ Output is usually a fixed length string

● Could have infinite inputs with a fix number of outputs
● Logic dictates there will be collisions
● A "collision" = two datasets create the same hash
● Predictable collisions are a huge problem

12

Lab time!
● Move to the hashing directory

○ "cd ~/hashing" without the double quotes

● There are two files in this directory

● Are they the same files?
○ Size
○ Date/time
○ Hash

● Can you explain any inconsistencies you see? 13

Hints
● Commands to try:

○ ls -al
○ md5sum *
○ sha1sum *
○ cmp -l image1.jpg image2.jpg

● If you are using SSH
○ Download and view the images
○ Do they look the same?

14

Answers - they seem similar

15

But are clearly different

16

Images are not the same

17

image1.jpg image2.jpg

What happened?
● These images are similar, but different

○ Date/time is the same
○ Size is the same

● Collision in the hash space when using MD5

● No collision with other hashing algorithms

● File compare (cmp) shows multiple offsets to where
different values are stored

18

Why are collisions bad?
● Two or more values can generate the same hash

● Problematic for passwords
○ System does not check plaintext, just the hash
○ One value per hash, one working password
○ Two or more values per hash, each can access account

● Problematic for verification
○ Really bad if collisions can be predictably manipulated
○ Evil data changes could go undetected

19

Back to VPNs
● Before the lab we were discussing components of VPNs
● Symmetric key encryption

○ Fast and efficient data privacy
○ Same key to encrypt and decrypt
○ How do we share keys over insecure medium?

● Hashing
○ One way algorithm - cannot reverse
○ Can verify if data has been changed (assuming no collisions)
○ Anyone can generate, so attacker could just generate a new hash after

making their evil changes 20

HMAC
● Hash-based Message Authentication Code

● With a hash, anyone can generate it

● HMAC is a hash plus a symmetric key
○ Limits hash creation and verification to key owners
○ MITM cannot change data and produce a new valid hash without

the symmetric key

● Good for authenticating packets as the hash is transmitted
with the packet 21

So where are we at with our VPN?
● Still need to figure out initial authentication

● Still need to figure out setting up a secure channel over an
insecure medium

● We can use symmetric key crypto to provide data privacy

● We can use HMAC to authenticate packets

● But we need to figure out the first two before the second
two are trustworthy

22

Next week on Fireside Fridays!
● We still have some components of our VPN to figure out

● We have a number of VPN protocols to discuss

● Next week we'll continue our journey!

23

Wrap up
● Thank you for attending!

● Certs & video will go out by Monday

● If you have any lingering questions, the Discord channel
will remain active
○ Also a good chance to socialize with others in the class
○ Have other tips and tricks? Please share with others!

● Thank you for sharing your time with us!
24

